350 rub
Journal Nonlinear World №5 for 2015 г.
Article in number:
Fluctuations of amplitude and frequency of self-oscillations in the active fractional oscillator
Authors:
V.V. Zajtsev - Ph. D. (Phys.-Math.), Professor, Department of Radiophysics, Samara State University. E-mail: zaitsev@ssu.samara.ru Ar.V. Karlov - Post-graduate Student, Department of Radiophysics, Samara State University. E-mail: ar.karlov@gmail.com I.V. Stulov - Post-graduate Student, Department of Radiophysics, Samara State University. E-mail: stulov.i.v@mail.ru
Abstract:
A mathematical model of self-oscillating system with differential equation of fractional order is introduced to consideration on an example of Thomson type oscillator with fractal excitation circuit of oscillating loop. Analysis of the model is performed by the methods of equivalent linearization and slowly varying amplitudes. The characteristics of steady self-oscillations mode are defined. A system of linearized fluctuation equations, that describes the fluctuations of amplitude and frequency of steady self-oscillation at presence of broadband noise source in self-oscillator is obtained. The spectral characteristics of fluctuations of amplitude and frequency of self-oscillation are defined. It is shown that introduction of fractional bonds in the oscillating system degrades its noise characteristics.
Pages: 4-11
References

 

  1. Potapov A.A.Fraktaly v radiofizike i radiolokacii. M.: Logos. 2002. 664 c.
  2. Tarasov V.E. Modeli teoreticheskojj fiziki s integro-differencirovaniem drobnogo porjadka. M.: Izhevsk: Izhevskijj institut kompjuternykh issledovanijj. 2011. 568 s.
  3. Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo porjadka i nekotorye ikh prilozhenija. Minsk: Nauka i tekhnika. 1987. 688 s.
  4. Uchajjkin V.V. Metod drobnykh proizvodnykh. Uljanovsk: Artishok. 2008. 512 s.
  5. Zaslavsky G.M. Hamiltonian Chaos and Fractional Dynamics. Oxford: Oxford University Press. 2005. (Zaslavskijj G.M.Gamiltonovkhaosifraktalnajadinamika. M.: Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». Izhevskijj institut kompjuternykh issledovanijj. 2010. 472 s.)
  6. Zajjcev V.V., Karlov Ar.V., JArovojj G.P.Dinamika avtokolebanijj drobnogo tomsonovskogo oscilljatora // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2012. T. 15. № 1. S. 64−68.
  7. Zajjcev V.V., Karlov Ar.V., Nuraev D.B.CHislennyjj analiz avtokolebanijj aktivnogo fraktalnogo oscilljatora // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2013. T. 16. № 2. S. 45−48.
  8. Zajjcev V.V., Karlov Ar.V., Stulov I.V.Sinkhronizacija drobnogo oscilljatora Van der Polja // Vestnik Samarskogo gosudarstvennogo universiteta. 2012. № 3−1 (94). S. 116−122.
  9. Bogoljubov N.N., Mitropolskijj JU.A. Asimptoticheskie metody v teorii nelinejjnykh kolebanijj. Izd. 4‑e. M.: Nauka. 1974. 504 s.
  10. Malakhov A.N. Fluktuacii v avtokolebatelnykh sistemakh. M.: Nauka. 1968. 660 s.
  11. ZHalud V., Kuleshov V.N. SHumy v poluprovodnikovykh ustrojjstvakh. M.: Sov. radio. 1977. 416 s.
  12. Vasilev V.V., Simak L.A.Drobnoe ischislenie i approksimacionnye metody v modelirovanii dinamicheskikh sistem. Kiev: NAN Ukrainy. 2008. 256 s.
  13. Potapov A.A., Gilmutdinov A.KH., Ushakov P.A.Fraktalnye ehlementy i radiosistemy: Fizicheskie aspekty / Pod red. A.A. Potapova. M.: Radiotekhnika. 2009. 200 s.
  14. Westerlund S. Dead matter has memory! // Physica Scripta. 1991. V. 43. № 2. P. 174−179.