350 rub
Journal Nonlinear World №6 for 2014 г.
Article in number:
Numerical solving of axisymmetric contact problem for elastic solids with functionally graded coatings
Keywords:
functionally graded coating
axisymmetric contact problem
variational inequality
finite element method
Authors:
A. A. Bobylov - Ph.D. (Phis-Math.), Associate Professor, Senior Research Scientist, Institute of Geotechnical Mechanics named by N.S. Polyakov (Ukraine, Dnepropetrovsk). E-mail: abobylov@gmail.com
I. S. Belashova - Dr.Sc. (Eng.), Professor, Moscow Aviation Institute (National Research University). E-mail: irina455@inbox.ru
I. S. Belashova - Dr.Sc. (Eng.), Professor, Moscow Aviation Institute (National Research University). E-mail: irina455@inbox.ru
Abstract:
The nonlinear axisymmetric contact problem of pressing a hard punch into an elastic body with functionally graded coating is considered. The variational formulations of the problem in the forms of a variational inequality and an extreme problem are obtained. The discretization of the problem is done by an unstructured triangular finite element grid of the axisymmetric finite elements with a triangular cross section. Modification of the conjugate gradients method is used for numerical solving of the problem. The carried-out test calculations showed that the occurrence of tensile stress zone in functionally graded coating under pressure of a hard punch is possible.
Pages: 36-41
References
- Mekhanika kontaktnykh vzaimodeystviy. M.: FIZMATLIT. 2001. 672 s.
- Goryacheva I. G. Mekhanika friktsionnogo vzaimodeystviya. M.: Nauka. 2001. 478 s.
- Analiticheskie resheniya smeshannykh osesimmetrichnykh zadach dlya funktsional'no-gradientnykh sred. M.: FIZMATLIT. 2011. 192 s.
- Bobylyev A. A., Belashova I. S. Chislennoe reshenie ploskikh kontaktnykh zadach dlya uprugikh tel s funktsional'no-gradientnymi pokrytiyami // Nelineynyy mir. 2013. T. 11. №10. S. 689−695.
- Kravchuk A. S. Variatsionnye i kvazivariatsionnye neravenstva v mekhanike. M.: MGAPI. 1997. 340 s.
- Dyuvo G., Lions Zh.-L. Neravenstva v mekhanike i fizike. M.: Nauka. 1980. 383 s.
- Panagiotopulos P. Neravenstva v mekhanike i ikh prilozheniya. Vypuklye i nevypuklye funktsionaly energii. M.: Mir. 1989. 496 s.
- Glovinski R., Lions Zh.-L., Tremol'er R. Chislennoe issledovanie variatsionnykh neravenstv. M.: Mir. 1979. 574 s.
- Bobylyev A. A. Ob odnom variante chislennogo resheniya kontaktnykh zadach teorii uprugosti // Reshenie prikladnykh zadach matematicheskoy fiziki i diskretnoy matematiki: sb. nauch. tr. Dnepropetrovsk: DGU. 1987. S. 23-29.
- Oden Dzh. Konechnye elementy v nelineynoy mekhanike sploshnykh sred. M.: Mir. 1976. 464 s.
- Bobylyev A. A. K voprosu ob opredelenii kontaktnykh napryazheniy metodom konechnykh elementov // Metody resheniya prikladnykh zadach mekhaniki deformiruemogo tverdogo tela: sb. nauch. tr. Dnepropetrovsk: DGU. 1989. S. 8-11.
- Shtaerman I.Ya. K teorii Gertsa mestnykh deformatsiy pri szhatii uprugikh tel // Dokl. AN SSSR. 1939. T. 25. № 5. S. 360-362.