350 rub
Journal Nonlinear World №3 for 2014 г.
Article in number:
A parametric method for determining the presence of fractal properties of the electrochemically treated surfaces
Authors:
A.A. Potapov - Dr.Sc. (Phys.-Math.), Professor, Leading Research Scientist, Kotel-nikov Institute of Radio Engineering and Electronics of RAS. E-mail: potapov@cplire.ru
O.F. Vyacheslavova - Dr.Sc. (Eng.), Professor, Department «Standardization, metrology and certification», Moscow State University of Mechanical Engineering. E-mail: smis@mami.ru
O.B. Bavykin - Associate Professor of Department «Standardization, metrology and certification», Moscow State University of Mechanical Engineering
Abstract:
This article shows that the fractal analysis of surface is effective in the case where the structure exhibits fractal properties. Well-known approaches assess the presence of fractal properties have a number of drawbacks and limitations that do not allow them to use for the study of fractality surface after electrochemical treatment. However, the properties of exponent Hurst (H) provide an opportunity to develop a parametric method for determining the presence of fractal in structure. The proposed method involves two steps. The first one allows you to assess the presence of fractal properties by checking for compliance with the behavior of the structure of the Gauss law. If the structure is not subject to the normal law is based on the properties of the parameter H, we may say that it is a fractal. The analysis of common approaches determine the presence of Gaussian statistics in the behavior of a random variable has shown that the best way to explore electrochemically treated surface is using of criterion for checking the directional asymmetry and directional criterion checks curvature. The second stage allows to estimate the intensity fractality by the analysis of the fractal properties of the distribution of the random variable for the presence of «heavy tail». It is noted that a convenient tool for this analysis is the graph of Pearson. It is shown that the results of research in the presence of fractal properties of electrochemically treated surfaces are in good agreement with the results of R/S-analysis performed in the Institute of Radioengineering and Electronics of Russian Academy of Sciences.
Pages: 3-12
References

  1. Potapov A.A. Primenenie fraktal'nykh metodov dlya obrabotki radiolokacionnykh izobrazhenij. http://www.cplire.ru/joined/koi/lection6/text.html#p6.
  2. Potapov A.A. Fraktaly v radiofizike i radiolokacii: Topologiya vyborki. Izd. 2-e, pererab. i dop. M.: Universitetskaya kniga. 2005.
  3. Potapov A.A. O fraktal'nykh radiosistemakh, drobnykh operatorakh, skejlinge i ne tol'ko - / Glava v kn. «Fraktaly i drobnye operatory» (kollektivnaya monografiya) / s predisloviem akad. Yu.V. Gulyaeva i chl.-korr. RAN S.A. Nikitova / pod red. A.Kh. Gil'mutdinova. Kazan': Izd-vo «Fen» ANRT. 2010. S. 417-472.
  4. Bavykin O.B., Vyacheslavova O.F. Formirovanie naimen'shego znacheniya sherokhovatosti poverkhnosti detalej mashin na os-nove vybora optimal'nykh rezhimov razmernoj elektrokhimicheskoj obrabotki // Izvestiya MGTU «MAMI». 2010. № 2. S. 103-108.
  5. Saushkin B.P., Shandrov B.V., Morgunov Yu.A. Perspektivy razvitiya i primeneniya fiziko-khimicheskikh metodov i tekhnologij v proizvodstve dvigatelej // Izvestiya MGTU «MAMI». 2012. T. 2. № 2 (14). S. 242-248.
  6. Barakhtin B.K., Meshheryakov Yu.I., Savenkov G.G. Dinamicheskie i fraktal'nye svojstva stali SP-28 v usloviyakh vysokoskorostnogo nagruzheniya // Zhurnal tekhnicheskoj fiziki. 1998. T. 66. № 10.
  7. Zolotukhin I.V., Kalinin Yu.E., Loginova V.I. Tverdotel'nye fraktal'nye struktury // Al'ternativnaya energetika i ekologiya. 2005. № 9.
  8. Potapov A.A., Bulavkin V.V., German V.A., Vyacheslavova O.F. Issledovanie mikrorel'efa obrabotannykh poverkhnostej s pomoshh'yu metodov fraktal'nykh signatur // Zhurnal tekhnicheskoj fiziki. 2005. T. 75. № 5.
  9. Mel'nik M.A. Fraktal'nyj analiz izvilistosti rek na primere Tomskoj oblasti // Vestnik Tomskogo gosudarstvennogo universiteta. 2010. № 335.
  10. Mandel'brot B.B. Fraktal'naya geometriya prirody / per. s angl. A.R. Logunova. M.: Institut komp'yuternykh issledovanij. 2002.
  11. Feder E. Fraktaly. M.: Mir. 1991.
  12. Starchenko N.V. Lokal'nyj analiz khaoticheskikh vremennykh ryadov s pomoshh'yu indeksa fraktal'nosti. Avtoref. diss. kand. fiz.-mat. nauk. Moskva. 2005.
  13. Potapov A.A., Gulyaev Yu.V., Nikitov S.A., Pakhomov A.A., German V.A. Novejshie metody obrabotki izobrazhenij / pod red. A.A. Potapova. M.: FIZMATLIT. 2008. (monografiya po grantu RFFI № 07-07-07005)
  14. Gerasimenko N.N., Aprelov S.A. Fraktal'nye metody analiza stepeni uporyadochennosti nanostruktur // Rossijskie nano-tekhnologii. 2007. T. 2. № 1-2.
  15. Aptukov V.N., Mitin V.Yu., Skachkov A.P. Issledovanie mikrorel'efa poverkhnosti sil'vina s pomoshh'yu metoda Khersta // Vestnik permskogo universiteta. 2010. № 4.
  16. Demin S.A., Galimzyanov B.N., Panishhev O.Yu. Analiz persistentnykh i antipersistentnykh korrelyacij v biomedicinskikh signalakh // Uspekhi sovremennoj radioelektroniki. 2011. Vyp. 5.
  17. Khan G., Shapiro S. Statisticheskie modeli v inzhenernykh zadachakh. M.: Mir. 1969.
  18. GOST R ISO 5479-2002. Statisticheskie metody. Proverka otkloneniya raspredeleniya veroyatnostej ot normal'nogo raspredeleniya. M.: IPK Izd-vo standartov. 2002.
  19. Hill B.A. A simple general approach to inference about the tail of a distribution // Ann. Statist. 1975. № 3. P. 1163-1174.
  20. de Hann L. On regular variation and its application to the weak convergence of sample extremes // Mathematisch centrum. Amsterdam. 1970.
  21. Hosking J., Wallis J. Parameter and quintile estimation for the generalized Pareto distribution // Technometrics. 1987. № 29. P. 339-349.
  22. Bevrani Kh., Anichkin K. Ocenka parametrov raspredelenij s tyazhelymi khvostami s pomoshh'yu empiricheskogo raspredeleniya // Sb. trudov XII mezhdunar. konf. «Matematika. Komp'yuter. Obrazovanie» / pod obshhej red. G.Yu. Riznichenko.
  23. Bavykin O.B. Primenenie v obrazovanii specializirovannykh komp'yuternykh programm «Nova» i «MyTestX» // IDO Science. 2011. № 1. S. 10-11.
  24. Bavykin O.B., Vyacheslavova O.F. Kompleksnaya ocenka kachestva poverkhnosti i ekspluatacionnykh svojstv izdelij iz nano-materialov // Avtomobil'naya promyshlennost'. 2012. № 3. S. 36-37.
  25. Bavykin O.B. Ustrojstvo dlya izmerenij fraktal'noj razmernosti poverkhnostnogo sloya // Inzhenernyj vestnik. 2013. № 6. S. 1-10.
  26. Bavykin O.B. Fraktal'naya mnogomernaya shkala, prednaznachennaya dlya upravleniya rezhimom razmernoj EKhO i ocenki ego vykhodnykh dannykh // Inzhenernyj vestnik. 2013. № 7. S. 1-8.
  27. Bavykin O.B. Ocenka kachestva poverkhnosti mashinostroitel'nykh izdelij na osnove kompleksnogo podkhoda s primeneniem mnogomernoj shkaly // Izvestiya MGTU «MAMI». 2012. T. 1. № 1. S. 139-142.
  28. http://www.cplire.ru/
  29. Potapov A.A. Fraktal'nyj metod, fraktal'naya paradigma i metod drobnykh proizvodnykh v estestvoznanii // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser. «Matematicheskoe modelirovanie. Optimal'noe upravlenie». 2012. № 5 (2). S. 172-180.
  30. Potapov A.A. The Global fractal method and the fractal paradigm in fundamental radar problems // Book of abstracts Int. conf. «Dynamics, bifurcations and strange attractors» dedicated to the Memory of L.P. Shil-nikov (1934-2011) (Nizhniy Novgorod, Russia, July 1-5, 2013). Nizhniy Novgorod: Lobachevsky State University of Nizhniy Novgorod. 2013. P. 98.
  31. Potapov A.A. Global'nyj fraktal'no-skejlingovyj metod i fraktal'naya paradigma v modelirovanii fiziko-tekhnicheskikh processov i sred // Vestnik Tambovskogo universiteta. Ser. «Estestvennye i tekhnicheskie nauki» (materialy mezhdunar. konf. «Kolmogorovskie chteniya - VI. Obshhie problemy upravleniya i ikh prilozheniya (OPU - 2013)», posv. 110 letiyu so dnya rozhdeniya A.N. Kolmogorova (Tambov, 7-11 oktyabrya 2013 g.)). 2013. T. 18. № 5. S. 2645-2646.