350 rub
Journal Nonlinear World №12 for 2014 г.
Article in number:
Homogenization of the equations of radiative heat transfer through the corner
Keywords:
transfer of energy through radiation
radiative energy transfer
coefficient of radiation attenuation
spectral intensity of radiation
a problem with a plane symmetry
averaging of equations of radiative heat transfer
temperature field of the radiating matter
spectral length of free path of radiation
the shock front
Authors:
А.S. Romanov - Dr.Sc. (Eng.), Associate Professor, Department of «Physics», Bauman Moscow State Technical University. E-mail: rolmal@bk.ru
А.V. Semikolenov - Ph.D. (Phys.-Math.), Associate Professor, Department of «Physics», Bauman Moscow State Technical University. E-mail: avsemik@mail.ru
N.S. Smirnova - Student, Department of «Physics», Bauman Moscow State Technical University. E-mail: rolandina19@gmail.com
Abstract:
The paper discusses the possibility of averaging over the angle of radiation equations of the heat transfer for the problem of calculating the radiation field for the case of «flat» symmetry. In this case it is possible to move from relationship between vectors to the relations between the scalars values, which greatly simplifies the problem. From the comparison of the expansion with obtained approximations it follows that the diffusion approximation and the approximation of radiative heat transfer correspond to the linear approximation of temperature with respect to the small parameter.
Pages: 42-49
References
- Romanov A.S. O konechnojj skorosti luchistogo teploperenosa // PMTF. 1987. № 1. S. 84-90.
- Romanov A.S. O sravnenii reshenijj zadachi Koshi dlja nekotorogo klassa integrodifferencialnykh uravnenijj // ZHVMiMF. 1988. T. 28. № 3. S. 466-469.
- Zeldovich JA.B., Rajjzer JU.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh javlenijj. M.: Nauka. 1966. 688 s.
- Spravochnik po specialnym funkcijam / pod red. A. Abramovica, I. Stigan. M.: Nauka. 1979. 832 s.
- Dubrovin B.A., Novikov S.P., Fomenko A.T. Sovremennaja geometrija: Metody i prilozhenija. Izd. 2-e, pererab. M.: Nauka. 1986. 760 s.