350 rub
Journal Nonlinear World №11 for 2014 г.
Article in number:
Stability analysis and stabilization of discontinuous systems by means of generalized Lyapunov functions
Authors:
O.V. Druzhinina - Dr.Sc. (Phys.-Math.), Professor, Dorodnicyn Computing Center of RAS E-mail: ov-druzh@mail.ru
O.N. Masina - Dr.Sc. (Phys.-Math.), Assistant Professor, Department of Automated Systems of Control and Mathematical softwAre, Yelets State University named after I.A. Bunin, E-mail: olga121@inbox.ru
Abstract:
Stability conditions and stabilization of systems with discontinuous right parts are considered. For receiving conditions are used locally Lipschitz-continuous and regular Lyapunov-s functions. Stability for a case of differential inclusions is investigated. Approach to studying of stability of nonlinear systems on the basis of the principle of reduction of problem of stability of solutions of differential inclusions to problem of stability of solutions of fuzzy differential equations is developed. The principle of reduction and stability conditions allow to investigate stability of controlled systems described by differential inclusions and the indistinct differential equations, containing control function in the right parts. In this case the principle of reduction assumes transition from differential inclusion to the corresponding fuzzy differential equation taking into account the additional conditions imposed on control. The considered stability conditions and stabilization can find application in problems of development and improvement of controlled technical systems.
Pages: 10-20
References
- Jurdjevic V., Quinn J.P. Controllability and stability // Journal of Differential Equations. 1978. № 28. P. 381-389.
- Bacciotti A. Local Stabilizability of Nonlinear Control Systems. Singapore: World Scientific. 1992.
- Bacciotti A. Stability and stabilization of discontinuous systems and nonsmooth Lyapynov functions // Rapporto Interno. 1998. V. 27. P. 1-21.
- Barbashin E.A., Kpacovskijj N.N. Ob ustojjchivosti dvizhenija v celom // DAN SSSR. 1952. T. 86. № 3. S. 453-456.
- Auslander J.,Seibert P. Prolongations and stability in dynamical systems // Ann. Inst. Fourier (Grenoble). 1964. № 14. P. 237-268.
- Bacciotti A.,Rosier L. Liapunov and Lagrange stability: inverse theorems for discontinuous systems // Mathematics of Control, Signals and Systems. 1998. V. 11. P. 101-128.
- Mazzi L., Tabasso V. On stabilization of time-dependent affine control systems // Rendiconti del Seminario Matematico dell-Universita e del Politecnico di Torino. 1996. V. 54. № 1. P. 53-66.
- Filippov A.F. Klassicheskie reshenija differencialnykh uravnenijj s mnogoznachnojj pravojj chastju// Vestnik MGU. Ser. Mat., mekh. 1967. № 3. S. 16-26.
- Filippov A.F. Differencialnye uravnenija s razryvnojj pravojj chastju. M.: Nauka. 1985.
- Tolstonogov A.A. Differencialnye vkljuchenija v banakhovom prostranstve. Novosibirsk: Nauka. 1986.
- SHestakov A.A. Obobshhennyjj prjamojj metod Ljapunova dlja sistem s raspredelennymi parametrami. M.: URSS. 2007.
- Merenkov JU.N. Ustojjchivopodobnye svojjstva differencialnykh vkljuchenijj, nechetkikh i stokhasticheskikh differencialnykh uravnenijj. Monografija. M.: Izd-vo RUDN. 2000.
- Panasjuk A.I. O dinamike mnozhestv, opredeljaemykh differencialnymi vkljuchenijami // Sib. matem. zhurn. 1986. T. 27. № 5. S. 155-165.
- Antosiewicz H.A., Cellina A. Continues selections and differential relations // J. Diff. Eq. l975. V. 19. P. 386-398.
- Sean S.W. Existents of solutions and asymptotic equilibrium of multivalued differential systems // J. Math. Anal. Appl. 1987. V. 89. P. 648-663.
- Bajjdosov V.A. Nechetkie differencialnye vkljuchenija // Prikladnaja matematika i mekhanika. 1990. T. 54. Vyp. 1. S. 12-17.
- Masina O.N. O sushhestvovanii reshenijj differencialnykh vkljuchenijj // Differenc. uravnenija. 2008. T. 44. № 6. S. 845-847.
- Druzhinina O.V., Masina O.N. Metody issledovanija ustojjchivosti i upravljaemosti nechetkikh i stokhasticheskikh dinamicheskikh sistem. M.: VC RAN. 2009.
- Merenkov JU.N.Ob ustojjchivosti nechetkikh sistem // Vestnik RUDN. Ser. «Prikladnaja matematika i informatika». 2002. № 1. S. 21-27.
- Ryan E.P. An integral invariance principle for differential inclusions with applications in adaptive control // SIAM J. Control. 1998. V. 36. № 3. P. 960-980.
- Shevitz D., Paden B. Lyapunov stability theory of nonsmooth systems // IEEE Transaction on Automatic Control. 1994. V. 39. № 9. P. 1910-1914.
- Coron J.M., Rosier L. A Relation between sontinuous time-varying and discontinuous feedback stabilization // J. of Math. Systems, Estimation and Control. 1994. V. 4. № 1. P. 67-84.
- Paden B., Sastry S. A calculus for computing Filippov-s differential inclusion with application to the variable structure control of robot manipulators // IEEE Trans. Circuits and Systems. 1997. V. Cas-34. № 1. P. 73-81.
- Clarke F.H. Optimization and Nonsmooth Analysis. N.-Y.: Wiley and Sons. 1983.
- Clarke F.H., Ledyaev Yu.S., Sontag E.D.,Subbotin A.I. Asymptotic sontrollability implies feedback stabilization // IEEE Trans. Automat. Control. 1997. № 42. P. 1394-1407.
- Druzhinina O.V., Masina O.N., Igonina E.V. Razrabotka algoritmov stabilizacii upravljaemykh sistem na osnove svojjstv linejjnykh matrichnykh neravenstv // Naukoemkie tekhnologii. 2013. T. 14. № 6. S. 4-8.
- Druzhinina O.V.,SHestakov A.A. Stabilizacija deskriptornykh sistem upravlenija // Naukoemkie tekhnologii. 2012. T. 13. № 11. S. 3-5.
- Druzhinina O.V., Masina O.N. Issledovanie ustojjchivosti tekhnicheskikh sistem upravlenija na osnove svojjstv vektornykh polejj // Naukoemkie tekhnologii. 2011. T. 12. № 7. S. 57-61.
- Druzhinina O.V., Masina O.N. Issledovanie ustojjchivosti upravljaemykh tekhnicheskikh sistem indeksno-divergentnym metodom // Nelinejjnyjj mir. 2011. T. 9. № 10. S. 677-682.
- SHestakov A. A., Masina O.N.,Druzhinina O.V.Analiz asimptoticheskojj ustojjchivosti i stabilizacija nekotorykh klassov sistem upravlenija s zapazdyvaniem // Informacionno-izmeritelnye i upravljajushhie sistemy. 2011. T. 9.№ 12.S. 104-110.