350 rub
Journal Nonlinear World №9 for 2013 г.
Article in number:
Imitation proof data transmssion in protected systems of one-way communication by means of polynomial residue classes
Authors:
D.V. Samoylenko - Ph.D. (Eng.), Art. Lecturer branch of the Military Academy of Communications (Krasnodar). E-mail: 19sam@mail.ru
О.А. Finko - Dr.Sci. (Eng.), Department of the branch of the Military Academy of Communications (Krasnodar). E-mail: ofinko@yandex.ru
Abstract:
As one of the shortages of many modern codes it is necessary to mention, in general, the unsolved problem of complex balanced provision of classical prerequisites: cryptographic stability, imitation proof and noise proof. There are methods existing in order to counteract the imitation by a saboteur, such as: forming of imitation inserts or hash codes, use of special regimes of encoding, such as gamming with the feedback are not able to solve this problem in full as they do not allow to restore the tampered data. The absence of decisive feedback in radio links only makes the problem more acute. Suggested methodology of noise- and imitation proof transmission of encrypted data is based on the use of imitation proof systematic encoding of transmitted data and consequent encoding of excess symbols. The encoding of excess symbols does not allow the saboteur to imitate "right" excessive symbols if the noise proof encoding algorithm is known to him. In case of an attempt by the saboteur to imitate transmitted encoded data leads to the appearance of detectable or fixable mistakes at the receiving end independently from the fact whether the receiving end is aware of the used algorithm of excessive encryption. The noise proof code used can be either modular or continuous, as well as polysemantic. The most attention should be paid to the use of polysemantic codes, symbols of which comprise blocks of sent encrypted data (in case of use of GOST 28147-89 - 64 bit code). As excessive code the polynomial modular code is used, which is based on mathematical apparatus of polynomial residue classes (modular arithmetic). Among the advantages of the methodology suggested are new functionalities: 1) recovery of original data in case of its intentional changes (imitation), 2) the use of ready to use, proved to function apparatus of the theory of noise proof encoding as existing today certified cryptographic algorithms, which minimizes the implementation period for the described system.
Pages: 647-658
References

  1. Fink L.M. Teoriya peredachi diskretny'x soobshhenij. M.: Sovetskoe radio. 1970.
  2. Klovskij D.D. Peredacha diskretny'x soobshhenij po radiokanalam. M.: Radio i svyaz'. 1982.
  3. Makarov S.B., Cikin I.A. Peredacha diskretny'x soobshhenij po radiokanalam s ogranichennoj polosoj propuskaniya. M.: Radio i svyaz'. 1988.
  4. Babash A.V., Shankin G.P. Kriptografiya. M.: Solon-R. 2002.
  5. Diffi U., Xellman M. Zashhishhennost' i imitostojkost'. Vvedenie v kriptografiyu // TIIE'R. 1979. T. 64. №3. S. 71‑109.
  6. Babash A.V., Gluxov M.M., Shankin G.P. O preobrazovaniyax mnozhestva slov v konechnom alfavite, ne razmnozhayushhie iskazhenij // Diskretnaya matematika. 1979. T. 9. №3. S. 3‑19.
  7. Tilborg van X.K.A. Osnovy' kriptologii. Professional'noe rukovodstvo i interaktivny'j uchebnik. M.: Mir. 2006.
  8. McEliece R.J. A Public-Key Cryptosystem Based on Algebraic Coding Theory, Deep Space Network Progress Report 42-44, Jet Propulsion Laboratory. California Institute of Technology. 1978. P. 114-116.
  9. Niederreiter H. Knapsack-Type Cryptosystems and Algebraic Coding Theory // Problems of Control and Information Theory. 1986. V. 15. №2. P. 159-166.
  10. Godoy W. A proposal of a cryptography algorithm with techniques of error correction //Computer Communications. 1997. V. 20. №15. P. 1374.
  11. Fin'ko O.A. Gruppovoj kontrol' assimetrichny'x kriptosistem metodami modulyarnoj arifmetiki // Sb. nauch. trudov XIV Mezhdunar. shkoly'-seminara «Sintez i slozhnost' upravlyayushhix sistem». MGU im. M.V. Lomonosova / pod red. akad. RAN O.B. Lupanova. N. Novgorod: Izd-vo Nizhegorod. ped. un-ta. 2003. S. 85-86.
  12. Fin'ko O.A. Mnogokanal'ny'e sistemy', ustojchivy'e k iskazheniyu kriptogramm // Kriptograficheskie metody' zashhity' informaczii / pod red. E.A. Suxareva. M.: Radiotexnika. 2007. Kn. 4. S. 91-96.
  13. Fin'ko O.A., Samojlenko D.V. Konstrukczii, kontroliruyushhie oshibki, na osnove dejstvuyushhix kriptograficheskix standartov // Sb. nauch. trudov VIII Mezhdunar. konf. «Diskretny'e modeli v teorii upravlyayushhix sistem». M.: Izd-vo MGU im. M.V. Lomonosova. 2009. S. 318-320.
  14. Samojlenko D.V., Fin'ko O.A. Kriptograficheskaya sistema v polinomial'ny'x klassax vy'chetov dlya kanalov s shumom i imitiruyushhim zloumy'shlennikom // Teoriya i texnika radiosvyazi. 2010. № 4. S. 39-45.
  15. Alferov A.P., Zubov A.Ju., Kuz'min A.S. i dr. Osnovy' kriptografii: ucheb. posobie. M.: Gelios ARV. 2002.
  16. Gabidulin E'.M., Afanas'ev V.B. Kodirovanie v radioe'lektronike. M.: Radio i svyaz'. 1986.
  17. Blejxut R. Teoriya i praktika kodov, kontroliruyushhix oshibki. M.: Mir. 1986.
  18. Akushskij I.Ja., Judiczkij D.M. Mashinnaya arifmetika v ostatochny'x klassax. M.: Sovetskoe radio. 1968.
  19. Boyarinov I.M. Pomexoustojchivoe kodirovanie chislovoj informaczii. M.: Nauka. 1983.
  20. Szabo N.S., Tanaka R.I. Residue Arithmetic and its Applications Computer Technolog. NewYork: McGraw-Hill. 1967.
  21. Amerbaev V.M. Teoreticheskie osnovy' mashinnoj arifmetiki. Alma-Ata: Nauka. 1976.
  22. Torgashev V.A. Sistema ostatochny'x klassov i nadezhnost' CVM. M.: Sovetskoe radio. 1973.
  23. Mandelbaum D.M. Error correction in residue arithmetic // IEEE Trans. Comput. 1972. 21(6). P. 538-545.
  24. Kalmy'kov I.A. Matematicheskie modeli nejrosetevy'x otkazoustojchivy'x vy'chislitel'ny'x sredstv, v polinomial'noj sisteme klassov vy'chetov / pod red. N.I. Chervyakova. M.: FIZMATLIT. 2005. S. 68-159
  25. Mandelbaum D.M. A method of coding for multiple errors // IEEE Trans. OnInformation Theory. 1968. 14(3). P. 518-521.
  26. Fin'ko O.A. Kontrol' i rekonfiguracziya analogo-czifrovy'x ustrojstv, funkczioniruyushhix v sisteme ostatochny'x klassov // E'lektronnoe modelirovanie. 2000. T. 22. №4. S. 92-103.