350 rub
Journal Nonlinear World №4 for 2013 г.
Article in number:
Identification of the non-classical physical parameters of the model ofstrain-gradient theory of elasticity
Keywords:
modeling
the stiffness of atomic chains
strain-gradient theory of elasticity
molecular dynamics
parameter identification
Authors:
Y.O. Solyayev, L.N. Rabinskiy, N.A. Yevdokimova, E.A. Panferova, I.R. Salahov
Abstract:
The authors propose a method to identify additional non-classical physical parameters of the strain-gradient theory of elasticity, which is based on a comparison of the gradient of the continuum model of elasticity and a discrete model of molecular dynamics. It is shown the correspondence of the gradient model of the theory of elasticity witha Lennard-Jones and Morse potentials in the problem of definition of the stiffness of two-component atomic strings consisting of different types of atoms. We identify the gradient and adhesive parameters of the gradient continual model for two-metal structures.
Pages: 226-233
References
- Gusev A.A., Lurie S.A. «Strain-Gradient Elasticity for Bridging Continuum and Atomistic Estimates of Stiffness of Binary Lennard-Jones Crystals». Advanced Engineering Materials. 2010. V. 12. № 6. P. 529 - 533.
- Lurie, S.A., Belov, P.A., Volkov-Bogorodsky, D.B., Tuchkova, N.P. Interphase layer theory and application in the mechanics of composite materials // J. Mat. Sci. 2006. V. 41. № 20. P. 6693 - 6707.
- Lurie, S.A., Belov, P.A. Cohesion field: Barenblatt-s hypothesis as formal corollary of theory of continuous media with conserved dislocations. // Int. J. Fract. 2008. V. 50. № 1-2. P. 181 - 194.
- Lurie S., Volkov-Bogorodsky. D, Zubov V., Tuchkova N. Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites. // Computational Materials Science. 2009. V. 45. № 3. P. 709 - 714.
- Volkov-Bogorodskijj D.B., Evtushenko JU.G., Zubov V.I., Lure S.A. CHislenno-analiticheskijj uchet masshtabnykh ehffektov pri raschete deformacijj nanokompozitov s ispolzovaniem blochnogo metoda multipolejj // Vychislitelnaja matematika i matematicheskaja fizika. 2006. T. 46. № 7. C. 1318 - 1337.