350 rub
Journal Nonlinear World №1 for 2013 г.
Article in number:
Dynamics of kinks of the modified sine-Gordon equation in the presence of stepped spatial modulation of the periodic potential
Authors:
E.G. Ekomasov, R.R. Murtazin, O.B. Bogomazova
Abstract:
In this work, dynamics of kinks of the sine-Gordon equation in mediums with stepped spatial modulation of the periodic potential (or in mediums with a defect) has been studied analytically and numerically. For the case of kink motion by inertia, the equation of motion for the center kink, and the value minimum velocity of kink, which necessary for overcoming the defect, and the dependence of the limiting velocity of kink motion after passing of the defect from the initial velocity has been found analytically, using the perturbation theory of solitons. For the case of the motion kink permanently under the external force, changing the structure of kink, and the dependence of the minimum velocity and the limiting velocity of kink motion from the external force has been determined numerically. It was shown that for the case of small defect, the analytical and numerical results coincide well. For the case of pinning of kink in the region of the defect, the dependence of the frequencies of exciting the internal modes of kink translating and pulsating types from the external force has been determined.
Pages: 51-57
References
  1. Косевич А. М., Ковалев А. С. Введение в нелинейную физическую механику. Киев: Наукова думка. 1989.
  2. Christiansen P. L., Sorensen M. P. and Scott A. C. Nonlinear science at the dawn of the 21st century. Springer, Berlin. 2000.
  3. Alwin Scott (editor) In: Encyclopedia of Nonlinear science. New York, London: Routledge, Taylor and Francis Group, 2005.
  4. Brown O. M., Kivshar J. S. The Frenkel-Kontorova model: Concepts, methods, and applications. Springer. Berlin. 2004.
  5. Якушевич Л. В.Нелинейная физика ДНК. М.: Институт компьютерных исследований; Ижевск: Регулярная и хаотическая динамика. 2007.
  6. Yakushevich L. V., Kashapova G. R. and Zakiryanov F. K. Influence of the Periodic Field with Constantand Slowly Changing Frequency on Movement of the DNA Kink // Biophysics. 2012. V. 57. № 1. P.21-26.
  7. Шамсутдинов М. А., Назаров В. Н., Ломакина И. Ю. и др. Ферро- и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны. М.: Наука. 2009.
  8. Gulevich D. R., Kusmartchev F. V.Perturbation theory for localized solution of the sine-Gordon equation; Decay of a breather and pinning by a microresistor // Phys. Rev. B. 2006. V. 74. P. 214303.
  9. Fogel M. B., Trullinger S. E., Bishop A. R. and Krumhansl J. A. Dynamics of sine-Gordon solitons in the presence of perturbations // Phys. Rev.B. 1977. V. 15. № 3. P. 1578-1592.
  10. Краснобаева А. В., Шаповалов Л. А. Солитоны уравнения синус-Гордона. Томск: Томский государственный университет. 2009.
  11. Kivshar Y. S., Malomed B. A., Fei Z., Vázquez L. Creation of sine-Gordon solitons by a pulse force // Phys. Rev. B. 1991. V. 43.
    P. 1098.
  12. Gonzales J. A., Bellorin A., Guerrero I. E.Internal modes of sine-Gordon solitons with the presence of spatiotemporal perturbations // Phys. Rev. E. 2002. V. 65. № 065601(R). Р.1 - 4.
  13. Fei Z., Kivshar Y. S., Vázquez L.Resonant kink-impurity interactions in the sine-Gordon model // Phys. Rev. A. 1992. V. 45.
    P. 6019 - 6030.
  14. Paul D. I. Soliton theory and the dynamics of a ferromagnetic domain wall // J. Phys. C: Solid State Phys. 1979. V. 12. № 3.
    P. 585 - 593.
  15. Currie J. P., Trullinger S. E., Bishop A. R., Krumhandl J. A. Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations // Phys. Rev. B. 1977. V. 15. P. 5567 - 5580.
  16. Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H.C. Solitons and nonlinear wave equations. Academic Press. Inc. London. 1982.
  17. Ekomasov E. G., Shabalin M. A.Simulation the nonlinear dynamics of domain walls in weak ferromagnets // The Physics of Metals and Metallography. 2006. V. 101. № 1. Р. S48 - S50.
  18. Екомасов Е. Г., Азаматов Ш. А., Муртазин Р. Р. Изучение зарождения и эволюции магнитных неоднородностей типа солитонов и бризеров в магнетиках с локальными неоднородностями анизотропии // ФММ. 2008. Т. 105. № 4. С. 341 - 349.
  19. Екомасов Е. Г., Азаматов Ш. А., Муртазин Р. Р., Гумеров А. М., Давлетшина А. Д. Моделирование нелинейной динамики магнитных неоднородностей в реальных магнетиках // Известия РАН. Сер. Физическая. 2010. Т. 74. № 10. С. 1520 ? 1522.
  20. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М.: Наука. 1987.
  21. Quintero N. R., Sanches A., Mertens F. G. Existence of internal modes of sine-Gordon kinks // Phys. Rev. E. 2000. V. 62. № 1.  P. 60 - 64.