350 rub
Journal Nonlinear World №3 for 2012 г.
Article in number:
Predictability of sociodynamics (as applied to a mathematical model of a peasant community)
Authors:
A.B. Medvinsky, S.A. Nefedov, A.V. Rusakov
Abstract:
Conceptual mathematical models are used extensively in studies of nonlinear dynamics of various natural and social systems. Conceptual modeling implies that only basic interactions between separate components of the systems under study are taken into account. Conceptual modeling allows describing the dynamical features of the phenomena being studied in the space of key parameters. Such a description is useful for revealing the main features of social communities - dynamics. In the given paper, we present a conceptual mathematical model of the peasant community dynamics. We show that variations in the population growth rate, which depends on consumption of the product produced by the community and also on the number of cultivated lands, can essentially change the character of the community dynamics and in particular can lead to emergence of dynamical chaos. We demonstrate that the horizon of predictability of the chaotic regimes depends on both intrinsic instability of the chaotic dynamics and the characteristic size of the chaotic attractor
Pages: 189-197
References
  1. Le Roy Ladurie. Les Paysans de Languedoc. Paris: S.E.V.P.E.N. 1966. V. 1-2.
  2. Lutz W. Finnish Fertility Since 1722: Lessons from an Extended Decline. Helsinki: The Population Research Institute. 1987.
  3. United Nations. World Population Prospects. The 1992 Revision. New York: United Nations. 1993.
  4. Marchetti C., Meyer P. S., Ausubel J. H. Human population dynamics revisited with the logistic model: how much can be modeled and predicted - // Technological Forecasting and Social Change. 1996. V. 52. P. 1-30.
  5. J. Parisi, S. C. Müller, W. Zimmermann A Perspective Look at Nonlinear Media - from Physics to Biology and Social Sciences // Editors, Lecture Notes in Physics. Berlin: Der Springer. 1998. V. 503.
  6. Turchin P. Historical Dynamics. Why States Rise and Fall. Princeton and Oxford: Princeton University, 2003.
  7. Турчин П. В. Историческая динамика. М.: ЛКИ. 2007.
  8. Гринин Л. Е., Малков С. Ю., Гусев В. А., Коротаев А. В. Некоторые возможные направления развития теории социально-демографических циклов и математические модели выхода из «мальтузианской ловушки» / под ред. С. Ю. Малкова, Л. Е. Гринина, А. В. Коротаева // Процессы и модели. М.: Либроком, 2009. С. 134-210.
  9. Komlos J., Nefedov S. Compact Macromodel of Pre-Industrial Population Growth // Historical Methods. 2002. V. 35. P. 92-94.
  10. Nefedov S. A model of demographic cycles in a traditional society: the case of Ancient China // Chinese Journal of Population Science. 2003. V. 3. P. 48-53.
  11. Коротаев А. В., Малков А. С., Халтурина Д. А. Законы истории. Математическое моделирование исторических макропроцессов. Демография, экономика, войны. М.: КомКнига, 2005.
  12. Tsirel S. On the Possible Reasons for the Hyperexponential Growth of the Earth Population // Mathematical Modeling of Social and Economic Dynamics / ed. by M. Dmitriev and A. Petrov. Moscow: Russian State Social University, 2004. P.367-369.
  13. Вайдлих В. Социодинамика. М.: Едиториал УРСС, 2005.
  14. Turchin P. Dynamical Feedbacks between Population Growth and Sociopolitical Instability in Agrarian States // Journal of Anthropological and Related Sciences. 2005. V. 1. P. 1-19.
  15. Нефедов С. А., Турчин П. В. Опыт моделирования демографически структурных циклов // История и математика: Макроисторическая динамика общества и государства. М.: КомКнига, 2007. C. 153-167.
  16. Андреев В.В., Семенов М.И. Математическое моделирование и исследование динамики социально-экономической системы (на примере США) // Нелинейный мир. 2010. № 3. C. 189-195.
  17. Medvinsky A. B., Petrovskii S. V., Tikhonova I. A., Malchow H., Li B.-L. Spatiotemporal complexity of plankton and fish dynamics. // SIAM Review. 2002. V. 44(3). P. 311-370.
  18. Kantz H., Schreiber T. Nonlinear Tine Series Analysis. Cambridge: Cambridge University, 1997.
  19. Ott E. Chaos in Dynamical Systems. Cambridge: Cambridge University, 2002.
  20. Фундаментальные и практические пределы предсказуемости / под ред. Ю. А. Кравцова // Пределы предсказуемости. М.: ЦентрКом, 1997. С. 170-200.
  21. Kaplan D., Glass L. Understanding Nonlinear Dynamics. New York: Springer, 1995.
  22. Chaos, Complexity, and Sociology / ed. by R. A. Eve, S. Horsfall, M. E Lee. Thousand Oaks: SAGE, 1997.