350 rub
Journal Nonlinear World №11 for 2012 г.
Article in number:
Time-frequency transformations of signals for the design system of multi-parameter analysis
Authors:
A.I. Sherstobitov, V.I. Marchuk, M.P. Malinis, S.A. Gridin
Abstract:
In this paper we consider linear time-frequency transform such as the Gabor windowed Fourier transform and nonlinear class of Cohen. We study their characteristics and properties. We consider a field of using time-frequency transformations. Researches have shown that the field of the time-frequency transformations is vast and not limited to the analysis of non stationary signals. In order to study the resolution of the considered time-frequency transforms, set of models test signals are generated (dual-frequency signal, linearly frequency-modulated signal (chirp signal) and tone-frequency modulated signal (tone FM signal)), which differ in spectral composition. The graphs of the spectrum of test signals obtained by linear and nonlinear time-frequency Gabor transform and the Choi-Williams, respectively are presented. Accuracy representation of test signals are researched in the case of linear and nonlinear time-frequency transform by criteria standard deviation, and the results are summarized in the table. Based on studies of time-frequency spectrums and estimates of accuracy of the representation test signal in the case of linear and nonlinear transformations is formed recommendations about the use of spectrum time-frequency transformations to increase the amount of information about the parameters and composition of the decomposed signal components at various local areas.
Pages: 762-768
References
  1. Юдин М.Н., Фарков Ю.А., Филатов Д.М. Введение в вейвлет-анализ. М., 2001.
  2. Cohen L. Time-frequency Distribution // Proceedings of IEEE. 1989. V. 77. №7. P. 941-981.
  3. Gabor О. Theory of communication //ЕЕ (London). 1946. V. 93. Р. 42.
  4. Portnoff M.R. Time-frequency representation of digital signal and systems based on short-time Fourier analysis // IEEE Transaction on Signal Processing. 1980. V. 28. №2. P. 1055-1062.
  5. Меркушева А.В. Классы преобразований нестационарного сигнала в информационно-измерительных системах. Элементы теории // Научное приборостроение. 2002. Т. 12. №2. С. 50-58.
  6. Wigner Е.Р. Оn the quantum correction for thermodynamic equilibrium // Phys. Rev. 1932. V. 40. Р. 749-759.
  7. Choi H., Williams W.J. Exponential kernel with reduced interference on the basis of exponential kernel // Proceedings of IEEE. 1996. V. 84. №9. P. 1264-1271.
  8. Ворр F. La mechanique quantique est-elle unе mechanique statistique classique particuliere / Аnn. Inst. Н. Poincare. 1956. V. 15. Р. 81-112.
  9. Марчук В.И. Повышение достоверности первичной обработки результатов измерений // Измерительная техника. 2003. №12. С. 3-6.
  10. Stankovic L.J. Improved Concentration in Time-Frequency Transformation for Using L-Wigner-Distribution // IEEE Transactions on Signal Processing. 1995. V. 43. №5. P. 1263.
  11. Марчук В.И., Воронин В.В., Шерстобитов А.И. Оценка погрешности выделения полезного сигнала при обработке в условиях ограниченного объема априорной информации // Радиотехника. 2011. №9. С. 75-82.
  12. Loughlin P.J., Pitton J.W., Atlas L.E. Bilinear time-frequency transformation. New insight and properties // IEEE Transaction on Signal Processing. 1993. V. 41. №3. P. 751-758.
  13. Choi H., Williams W.J. Improved time-frequency representation with exponential kernels // IEEE Transactions on Signal Processing. 1989. V. 37. №6. P. 862-871.
  14. Gaunaurd G.C., Strifors H.C. Signal Analysis by Means of Time-Frequency Transformation оf Wigner Type // Proceedings of IEEE. 1996. V. 84. №9. P. 1231-1247.
  15. Марчук В.И., Румянцев К.Е., Шрайфель И.С. Двукритериальный метод обработки результатов измерений // Авиакосмическое приборостроение. 2005. №12. С. 33-35.