350 rub
Journal Nonlinear World №2 for 2011 г.
Article in number:
Keywords:
Authors:
S.N. Petrova
Abstract:
One of the main problems considered in this article is research of the chain stability. It is established that the chain stability is a concept more strong than the concept of absolute stability and asymptotic stability ¬¬is a concept more strong than the chain stability. The definition of a chain of stability is based on the fundamental system of attracted neighborhoods. It is shown that the positively invariant compact is a chain-stable if and only if when it-s a pseudo-attracting set. This article describes an approach to studying the stability of non-compact trajectories. A theorem establishing a connection between the first extension and continuation of a filter is proved. In addition, the theorem establishing the criterion of stability in terms of neighborhoods of points belonging to the semi-trajectory is proved. The results can be applied to the qualitative study of nonlinear dynamic systems modeling various processes and phenomena.
Pages: 86-94
References
  1. Auslander J., Seibert P. Prolongations and stability in dynamical systems // Ann. Inst. Fourier (Grenoble). 1964. V .14. Р. 237-268.
  2. McCann R. Another characterization of absolute stability // Ann. Inst. Fourier (Grenoble). 1971. V. 21. P. 175-177.
  3. McCann R. On absolute stability // Ann. Inst. Fourier (Grenoble). 1972. V. 22. P. 265-269.
  4. Bhatia N.P., Szego G.P. Stability theory of dynamical systems. Berlin: Springer. 1970.
  5. Ding C. The omega limit sets of subsets in a metric space // Czechoslovak Math. J. 2005. V. 55. P. 87-96.
  6. Бронштейн И.У. Неавтономные динамические системы. Кишинев: Штиинца. 1984.
  7. Немыцкий В.В., Степанов В.Н.Качественная теория дифференциальных уравнений. М.: Гостехиздат. 1949.
  8. Дружинина О.В., Шестаков А.А. О расширении понятия орбитальной устойчивости траекторий динамической системы // Докл. РАН. 2001. Т. 377. № 5. С. 621-625.