350 rub
Journal Nonlinear World №8 for 2010 г.
Article in number:
Localization and Stability of Closed Trajectories of Nonlinear Dynamical Systems
Authors:
S.N. Petrova
Abstract:
One of the important problems of nonlinear dynamic analysis is to study the qualitative behavior of solutions and stability of limit cycles of nonlinear differential equations. Large applied interest differential systems with the convex (concave) nonlinearity. We carried out estimation of the number of closed solutions of scalar non-autonomous differential equation with the appropriate terms of the concavity. Consider a dynamic system, described by the passer multidimensional nonlinear differential equations. For systems with a convex (concave) nonlinearity evaluated the number of closed trajectories. The necessary and sufficient conditions for existence and stability of the limiting cycles on the basis of N.E. Zhukovskij approach and generalization of A. Poincare - I. Bendixon theory are obtained.
Pages: 525-534
References
  1. Пуанкаре А. Избранные труды. Т. 1. М.: Наука, 1971.
  2. Ляпунов А.М. Общая задача об устойчивости движения.  Харьков: Изд-во Харьковского матем. общ-ва. 1892.
  3. Жуковский Н.Е. О прочности движения // Уч. записи Московского университета. 1882. Вып. 1. С. 1-104.
  4. Bendixon I. Sur les courbes definis par des equations differentielles // Acta Mathematica. 1901. V. 24. P. 1-88.
  5. Дюлак Г. Предельные циклы. М.: Наука. 1980.
  6. Демидович Б. П. Лекции по математической теории устойчивости. М.: Наука. 1967.
  7. Дружинина О.В., Шестаков А.А. Необходимые и достаточные условия существования автоколебаний в конечномерной непрерывной динамической системе // ДАН. 2008. Т. 418. № 1. С. 37-41.
  8. Дружинина О.В. Методы анализа устойчивости и динамической прочности траекторий нелинейных динамических систем. М.: ВЦ РАН. 2007.
  9. Дружинина О.В. Динамическая прочность траекторий нелинейных дифференциальных систем // Нелинейный мир. 2009.
    Т. 7. № 6. С. 448-455.
  10. Smith  H.L. Cooperative systems of differential equations with concave nonlinarties // Nonlinear Analysis. 1986. V.10. P. 1037-1052.
  11. Sandgvist  A., Jin C.-F. Qualitative  behavior of the solutions of periodic first order scalar differential equations with weakly concave nonlinearities // Differential Integral Equations. 1992. V. 5. P. 149-164.
  12.  Sandgvist A., Andersen K.M. Localization of  closed (periodic) solutions of a differential system with concave nonlinearities // Bull. London Math. Soc. 2005. V. 37. P. 213-223.