350 rub
Journal Nonlinear World №8 for 2010 г.
Article in number:
Numerical Modeling of Heat and Mass Transfer in Two-Phase Nonlinear Space
Keywords:
heat and mass transfer
nonlinear two-phase space
mathematical modeling
highly nonlinear problem
filtration
composite materials
Authors:
E.L. Kuznetcova
Abstract:
A new complex approach is proposed for mathematical modeling of multidimensional non-steady heat and mass transfer in composite materials under high-temperature heating, when all transfer properties are nonlinear. These problems are actual for aero- and spatial industry during last forty years.
In the composite materials loaded by high temperatures a small domain of pyrolysis of binding agents is observed, where binding agent is transformed to porous residue and pyrolysis gas filtering throw the porous media to the outer boundary under the pyrolytic pressure. The pyrolysis zone is moved by heat flows from outer media into composite structure with unknown velocity that can be defied by heat state of material. Thus, the complex model of heat and mass transfer in composite structure is combined from the next nonlinear particular models: binding agents - physical and chemical pyrolyse, non-isothermal pyrolysis gases filtration, heat conduction considering filtration processes, non-steady pyrolysis zone-s boundaries motion and mass loss form the outer boundary.
Using the identified by author nonlinear principles of both binding agent destruction and pyrolysis gases filtration a new model of heat and mass transfer in two-phase anisotropic media is proposed and new economic and absolutely stable method of the complex problem-s numerical solution is proposed. Using the developed software many new results are obtained, for example, two-dimensional temperature fields in porous and non-destructed phases, two-dimensional non-steady moving boundaries of pyrolysis zone, pressure and velocity fields for pyrolysis gases. Some guidelines to use these methods are formulated
Pages: 497-508
References
- Формалев В.Ф., Федотенков Г.В., Кузнецова Е.Л. Общий подход к моделированию теплового состояния композиционных материалов при высокотемпературном нагружении // Механика композиционных материалов и конструкций. 2006. Т. 12. № 1. С. 141-156.
- Формалев В.Ф. Тепломассоперенос в анизотропных телах. Обзор// ТВТ. 2001. Т. 39. № 5. С. 810-832.
- Формалев В.Ф. Моделирование нелинейной неизотермической фильтрации в условиях пленочного охлаждения анизотропных тел // ТВТ. 1997. Т. 35. № 2. С. 1-7.
- Peaceman D., Rachford H. The Numerical solution of parabolic and elliptic differential equations // SIAM. 1955. V. 3. No. 1.
- Яненко Н.Н. Метод дробных шагов решения многомерных задач математической физики. Новосибирск: Наука. 1967.
- Формалев В.Ф., Ревизников Д.Л. Численные методы. М.: Физматлит. 2004.
- Кузнецова Е.Л. Математическое моделирование тепломассопереноса в композиционных материалах при высокоинтенсивном нагреве (Канд. дисс.). М.: МАИ. 2006.