350 rub
Journal Nonlinear World №11 for 2009 г.
Article in number:
Pseudoparticle Approach to Description of Discrete Stochastic Processes in Complex Systems
Authors:
S.A. Demin, O.Yu. Panischev, A.V. Yatsenko, R.M. Yulmetyev
Abstract:
Here we develop the pseudoparticle method for the description of complex systems on the basis of Zwanzig-Mori's projective formalism for discrete time correlation memory functions. The analysis of neuromagnetic responses of human cerebral cortex generated from a group of healthy people, and from a patient with photosensitive epilepsy is performed. We assume the dynamics of the registered physiological parameter as a coordinate of the pseudoparticle with the unit mass, moving in one-dimensional space. A set of values characterizing a pseudoparticle motion, such as its velocity, acceleration, kinetic energy, energetic current is introduced by the finite differences. By Zwanzig-Mori's projection technique, we derive the set of correlation functions and information measures of statistical memory, kinetic and relaxation parameters which are directly defined by the experimental time series of live systems. In recent authors' papers it is shown that the greatest differences in reaction to the flickering stimuli between the group of healthy people and the patient with photosensitive epilepsy are observed in the neighborhood of the 10th sensor, located in the frontal region (the MEG registration is done by 61 sensors). For that matter we analyze the neuromagnetic responses, registered from this sensor. The results, received for a dynamics of values, describe a pseudoparticle motion. They reflect the essential differences in cerebral cortex signals of the healthy people and the patient, such as the significant stratification of phase portraits, the critical changes in statistical memory effects and in velocity of relaxation processes. The abnormal behavior of brain rhythms (spontaneous brain electric activity) is revealed in patient's MEG signals. We have discovered the original protective mechanism which blocks the abnormal neural collective activity. This activity observed at photosensitive epilepsy is a response to external visual stimuli. At this disease the influence of this mechanism is depressed, that is reflected by occurrence of a high-frequency component in dynamics of the brain signals. The opportunity to derive an adequate estimation for the organism conditions by analyzing the biomedical signals is a serious problem existing in a modern medical physics. The pseudoparticle description of neuromagnetic responses caused by influence of flickering light stimuli, allows to demonstrate the differences in dynamics of brain signals from the patient and healthy people, and also to quantitatively diagnose the manifestations of photosensitive epilepsy. Thus the findings demonstrate the principal opportunities for reflection of even small individual differences in the live systems signals at the external influences and allow to characterize the pseudoparticle description as one of tools of the future «individual medicine».
Pages: 820-834
References
  1. Yulmetyev R.M., Mokshin A.V., Hänggi P. Universal approach to overcoming nonstationarity, unsteadiness and non-Markovity of stochastic processes in complex systems. Physica A. 2005. V. 345. P. 303-325.
  2. Stratonovich R.L. Topics in the Theory of Random Noise. New York.: Gordon and Breach. 1963. V. 1; 1967. V. 2.
  3. Witt A., Kurths J., Pikovsky A. Testing stationarity in time series // Phys. Rev. E. 1998. V. 58. No. 2. P. 1800-1810.
  4. Bernaola-Galvan P., Ivanov P.Ch., Amaral L.A.N., Stanley H.E. Scale Invariance in the Nonstationarity of Human Heart Rate // Phys. Rev. Lett. 2001. V. 87. No. 16. P. 168105-1-4; 
  5. Chen Z., Ivanov P.Ch., Hu K., Stanley H.E. Effect of nonstationarities on detrended fluctuation analysis // Phys. Rev. E. 2002. V. 65. No. 4. P. 041107-1-15.
  6. Gell-Mann M. What is complexity - // Complexity. 1995. V. 1. No. 1. P. 16-19.
  7. Lloyd S. Programming the Universe: A Quantum Computer Scientist Takes On the Cosmos. New York: Alfred A. Knopf. 2006.
  8. Anderson P.W. Physics: The opening to complexity // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 6653-6654.
  9. Weaver W. Science and Complexity // American Scientist. 1948. V. 36. No. 4.P. 536-544.
  10. Solomon S., Shir E. Complexity; a science at 30 // Europhysics News. 2003. V. 34. No. 2. P. 54-57.
  11. Louzoun Y., Solomon S., Atlan H., Cohen I.R. Modeling complexity in biology // Physica A. 2001. V. 297. P. 242-252.
  12. Anderson P.W. More is different // Science. 1972. V. 177. No. 4047. P. 393-396.
  13. Levy M., Levy H., Solomon S.Microscopic Simulation of Financial Markets: From Investor Behaviour To Market Phenomena.  New York: Academic Press. 2000.
  14. Mandelbrot B.B. The Fractal Geometry of Nature. New York.: W.H. Freeman. 1983.
  15. УчайкинВ.В. Методдробныхпроизводных. Ульяновск: Артишок. 2008.
  16. Учайкин В.В. Фрактальные блуждания и блуждания на фракталах // Журнал технической физики. 2004. Т. 74. № 7. С. 123-126.
  17. Boyarsky A., Góra P. Laws of chaos: invariant measures and dynamical systems in one dimension. Birkhauser: New York. 1997.
  18. Boyarsky A., Góra P. Energy and information of chaotic dynamical systems // Chaos, Solitons and Fractals. 2001. V. 12. P. 1611-1618.
  19. Zwanzig R. Nonequilibrium Statistical Mechanics. New York: Oxford University Press. 2001.
  20. Zwanzig R. Ensemble method in the theory of irreversibility // J. Chem. Phys. 1960. V. 3. P. 106-141.
  21. Zwanzig R. Memory effects in irreversible thermodynamics // Phys. Rev. 1961. V. 124. P. 983-992.
  22. Mori H. Transport collective motion and Brownian motion // Prog. Theor. Phys. 1965. V. 33. P. 423-455.
  23. Mori H. A continued fraction representation of the time correlation functions // Prog. Theor. Phys. 1965. V. 34. P. 399-416.
  24. Yulmetyev R., Hänggi P., Gafarov F. Stochastic dynamics of time correlation in complex systems with discrete time // Phys. Rev. E. 2000. V. 62. P. 6178-6194.
  25. Yulmetyev R., Hänggi P., Gafarov F. Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes // Phys. Rev. E. 2002. V. 65. P. 046107-1-15.
  26. Shurygin V.Yu., Yulmetyev R.M., Vorobjev V.V. Physical criterion of the degree of non-Markovity of relaxation processes in liquids // Phys. Lett. A. 1990. V. 148. P. 199-203.
  27. Шурыгин В.Ю., Юльметьев Р.М. Пространственная дисперсия структурной релаксации в простых жидкостях // ЖЭТФ. 1991. Т. 99. С. 144-154.
  28. Шурыгин В.Ю., Юльметьев Р.М., Воробьев В.В. О спектре параметра немарковости релаксационных процессов в жидкостях // ЖЭТФ. 1992. Т. 102. С. 852-862.
  29. Shurygin V.Yu., Yulmetyev R.M. The spectrum of the non-Markovity parameter for relaxation processes in liquids // Phys. Lett. A. 1993. V. 174. P. 433-436.
  30. Mokshin A.V., Yulmetyev R.M., Hänggi P. Simple Measure of Memory for Dynamical Processes Described by a Generalized Langevin Equation // Phys. Rev. Lett. 2005. V. 95. P. 200601-1-4.
  31. Bhattacharya J., Watanabe K., Shimojo S. Nonlinear dynamics of evoked neuromagnetic responses signifies potential defensive mechanisms against photosensitivity // Int. J. Bifur. Chaos. 2004. V. 14. P. 2701-2720.
  32. Watanabe K., Imada T., Nihei K., Shimojo S. Neuromagnetic responses to chromatic flicker: Implication for photosensitivity // Neuroreport. 2002. V. 13. No. 16. P. 2161-2165.
  33. Yulmetyev R.M., Yulmetyeva D.G., Hänggi P., Shimojo S. Bhattacharya J. Strong memory in time series of human magnetoencephalograms can identify photosensitive epilepsy // JETP. 2007. V. 104. P. 644-650.
  34. Yulmetyev R.M., Hänggi P., Yulmetyeva D.G., Shimojo S., Khusaenova E.V., Watanabe K., Bhattacharya J. Relaxation and phase space singularities in time series of human magnetoencephalograms as indicator of photosensitive epilepsy // Physica A. 2007.
    V. 383. P. 443-454.
  35. Yulmetyev R.M., Khusaenova E.V., Yulmetyeva D.G., Hänggi P., Shimojo S., Watanabe K., Bhattacharya J. Statistical memory of MEG's signals at photosensitive epilepsy // IJBC. 2008. V. 18. No. 9. P. 2799-2805.
  36. Timashev S.F., Polyakov Yu.S., Yulmetyev R.M., Demin S.A., Panischev O.Yu, Shimojo S.,  Bhattacharya J. Analysis of biomedical signals by flicker-noise spectroscopy: Identification of photosensitive epilepsy using magnetoencephalograms // Laser Physics. 2009. V. 19. No. 4. P. 836-854.
  37. Yulmetyev R.M., Khusaenova E.V., Yulmetyeva D.G., Hänggi P., Shimojo S., Watanabe K., Bhattacharya J. Dynamic effect and information quantifiers of statistical memory of MEG's signals at photosensitive epilepsy // MBE. 2009. V. 6. No. 1. P. 189-206.