350 rub
Journal Nonlinear World №1 for 2009 г.
Article in number:
Physics, Existence and Fusion of Cluster Structures of Coupled Dynamical Systems
Keywords:
Authors:
N.N. Verichev
Abstract:
A theory of cluster structures in lattices of oscillators is proposed. The theory is based on a classical synchronization of cluster forming and structure forming objects called as cluster oscillators and simple cells. Both are governed by systems of coupled oscillators and are physically interpreted as generalized oscillators. A physical nature of cluster structures as a synchronization of generalized oscillators is shown. A type of C-oscillator determines the class of structures so the problem of existence of the different classes is reduced to study of existence of the different types of C-oscillators. The fullness of types of C-oscillators and simple cells in a chain, ring and two-dimensional lattice is established. The general properties of cluster structures and principles of the fusion of lattices of different geometrical forms having prescribed cluster properties are presented
Pages: 28
References
  1. Pecora L.M., Carroll T.L., Johnson G.A. Fundamentals of Synchronization in Chaotic Systems, Concepts and Applications. - Chaos, 1997, vol. l7, no. 4, pp. 520.
  2. Pecora L.M. Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. - Physical Review E, 1998, vol. 58, pp. 347 - 360.
  3. Kaneko K. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. - Physica D., 1990, vol. 41, pp. 137 - 172.
  4. Belykh V.N. and Mosekilde E. One Dimensional Map Lattices: Synchronization, Bifurcations and Chaotic Structures. - Phys. Rev., 1996, E 54, pp. 3196 - 3203.
  5. Watanabe S., van der Zant H.S.J., Strogatz S.H. and Orlando T.P. Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation. - Physica D., 1996, vol. 97, pp. 429 - 470.
  6. Kaneko K. Relevance of Clustering to Biological Networks. - Physica D., 1994, vol. 75, pp. 55 - 73. 
  7. Josic K. Invariant Manifolds and Synchronization of Coupled Dynamical Systems. - Phys. Rev. Lett. 1998, vol. 80, pp. 3053 - 3056.
  8. Belykh V.N., Belykh I.V., and Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. - Phys.Rev., 2000, E 62, pp. 6332 - 6345.
  9. Belykh V.N., Belykh I.V., and Mosekilde E. Cluster synchronization modes in an ensemble of coupled chaotic oscillators. - Phys.Rev., 2001, E 63, 036216.
  10. Belykh V.N., Belykh I.V., Nevidin K.V. Spatiotemporal synchronization in lattices of locally coupled oscillators. - Int. Journal Mathematics and Computers in Simulation (NH Elsevier Publishing), 2002, vol. 58, pp. 477 - 492.
  11. Belykh V., Belykh I., Hasler M., and  Nevidin K. Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators. ? Int. Journal of Bifurcation and Chaos, 2003, vol. 13, pp. 755 - 779.
  12. Chua L.O. A zoo of strange attractors from the canonical Chua's circuits, Proceedings of the 35th Midwest Symposium on Circuits and Systems (Cat. No.92CH3099-9). - IEEE, 1992, vol. 2, pp. 916 - 926.
  13. Yamada T. and Fujisaka H. Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II - The Mapping Approach. - Prog. Theor. Phys., 1983, vol. 70, pp. 1240 - 1248.
  14. Afraimovich V.S., Verichev N.N., and Rabinovich M.I. Stochastic synchronization of oscillation in dissipative systems. - Radiophys. Quantum Electron, 1986, vol. 29, pp. 795 - 803.
  15. BelykhI., Verichev N. Global synchronization and strange attractors in coupled superconducting junctions. - Proceedings of the Int. Conference NDES-97 (Nonlinear Dynamics of Electronic Systems), Moscow, Russia, 1997, pp. 145 - 149.
  16. Verichev, N.N., Verichev S.N., Wiercigroch M. Physical interpretation and theory of existence of cluster structures in lattices of dynamical systems. Chaos, Solitons and Fractals, 2007, vol. 34, no. 4, pp. 1082 - 1104.
  17. Магнус. К. Колебания. Введение в исследование колебательных систем. - М.: Мир, 1982.
  18. Бароне А., Патерно Дж. Эффект Джозефсона. Физика и применения. - М.: Мир, 1984.
  19. Лихарев К.К. Введение в динамику джозефсоновских переходов. - М.: Наука, 1985.
  20. Josepson B.D. The discovery of tunnely supercurrents. - Rev. Mod. Phys., 1974, vol. 46, pp. 252 - 254.
  21. McCumber D.E. Effect of AC impedance on DC voltage-current characteristics of superconductor weak-link junctions. - Journal of Applied Physics, 1968, vol. 39, p. 3113.
  22. Веричев Н.Н., Веричев С.Н., Ерофеев В.И. ? Нелинейный мир, 2008, т.6, №5-6, с.398.