O.N. Krakhmalev1
1 Financial University under the Government of the Russian Federation (Moscow, Russia)
Problem. Simulation of manipulative robots makes it possible to study their functional characteristics. Mathematical models for modeling the movement of robots are the basis for the development of their control systems.
Target. Carrying out an analysis of the computational complexity of mathematical models and computational algorithms for modeling the kinematics of manipulation robots, which can significantly increase the efficiency of calculations.
Results. A method for compiling object diagrams has been developed, which makes it possible to automate the compilation of algorithms for calculating the kinematic parameters of such robots. Examples of object schemes for calculating the velocities and accelerations of points selected on the links of manipulation robots are presented. An analysis of the computational complexity of the developed algorithms is carried out and a method is proposed that allows to significantly increase the efficiency of calculations by reducing the performed operations of addition and multiplication. A two-level parallel computing algorithm has been developed, which makes it possible to additionally improve the efficiency of calculations when using multiprocessor computing systems. Information and computational graphs illustrating the developed algorithm are presented.
Practical significance. The conducted research allows to automate the process of modeling the movement of manipulative robots. The object approach and the simulation methods developed on its basis can also be implemented in control systems for manipulation robots.
Krakhmalev O.N. Object modeling in the kinematics of manipulation robots. Neurocomputers. 2022. V. 24. № 5. Р. 55-66.
DOI: https://doi.org/10.18127/j19998554-202205-06 (in Russian)
- Belousov I.R. Primenenie metoda simvol'nyh preobrazovanij dlja formirovanija algoritma parallel'nyh vychislenij v zadachah kinematiki i dinamiki robotov. Otchet IPM im. M.V. Keldysha RAN № 5-19-93. 1993. 25 s. (in Russian).
- Vtorov V.B., Inshakov D.Ju. Modelirovanie dinamiki robota-manipuljatora na parallel'nyh vychislitel'nyh strukturah. Izvestija TJeTU. 1997. № 513. S. 65-70 (in Russian).
- Malashonok G.I., Avetisjan A.I., Valeev Ju.D., Zuev M.S. Parallel'nye algoritmy komp'juternoj algebry. Trudy ISP RAN. 2004. T. 8. № 2. S. 169-180 (in Russian).
- Vnukov A.A., Lisenkov M.A. Parallel'nyj algoritm obrabotki dannyh na primere reshenija osnovnyh zadach dinamiki robotov-manipuljatorov. Doklady V Mezhdunar. konf. «Parallel'nye vychislenija i zadachi upravlenija». M. 2010. S. 1025-1036 (in Russian).
- Vnukov A.A., Lisenkov M.A. Razrabotka algoritmov parallel'noj obrabotki dannyh v mnogoprocessornyh sistemah na primere reshenija zadach dinamiki promyshlennyh robotov. Vestnik RUDN. Ser. Inzhenernye issledovanija. 2010. № 4. S. 60-72 (in Russian).
- Nelaeva E.I., Chelnokov Ju.N. Reshenie prjamyh i obratnyh zadach kinematiki robotov-manipuljatorov s ispol'zovaniem dual'nyh matric i bikvaternionov na primere stjenfordskogo manipuljatora. Ch. 1. Mehatronika, avtomatizacija, upravlenie. 2015. № 6(16). S. 373-380. https://doi.org/10.17587/mau.16.373-380 (in Russian).
- Nelaeva E.I., Chelnokov Ju.N. Reshenie prjamyh i obratnyh zadach kinematiki robotov-manipuljatorov s ispol'zovaniem dual'nyh matric i bikvaternionov na primere stjenfordskogo manipuljatora. Ch. 2. Mehatronika, avtomatizacija, upravlenie. 2015. № 7(16). S. 456-463. https://doi.org/10.17587/mau.16.456-463 (in Russian).
- Smirnov P.A., Jakovlev R.N. Reshenie prjamoj i obratnoj zadach kinematiki v sisteme pozicionirovanija zven'ev manipuljatora.
Mehatronika, avtomatizacija, upravlenie. 2019. № 12(20). S. 732-739. https://doi.org/10.17587/mau.20.732-739 (in Russian). - Kolpashhikov D.Ju., Gerget O.M. Sravnenie algoritmov obratnoj kinematiki dlja mnogosekcionnyh nepreryvnyh robotov. Mehatronika, avtomatizacija, upravlenie. 2021. № 8(22). S. 420-424. https://doi.org/10.17587/mau.22.420-424 (in Russian).
- Krahmalev O.N. Modelirovanie manipuljacionnyh sistem robotov: Ucheb. posobie. Saratov: Aj Pi Jer Media. 2018. 165 s. (in Russian).
- Krahmalev O.N. Ob’ektno-orientirovannoe modelirovanie manipuljacionnyh sistem robotov. Robototehnika i tehnicheskaja kibernetika. 2018. № 4(21). S. 41-47 (in Russian).
- Krakhmalev O., Korchagin S., Pleshakova E., Nikitin P., Tsibizova O., Sycheva I., Liang K., Serdechnyy D., Gataullin S., Krakhmalev N. Parallel Computational Algorithm for Object‐Oriented Modeling of Manipulation Robots. Mathematics. 2021. V. 9. 2886. https://doi.org/10.3390/math9222886.
- Gergel' V.P., Strongin R.G. Osnovy parallel'nyh vychislenij dlja mnogoprocessornyh vychislitel'nyh sistem: Ucheb. posobie. N. Novgorod: NNGU. 2003. 184 s. (in Russian).
- Kaljaev I.A., Dordopulo A.I., Levin I.I., Fedorov A.M. Razvitie otechestvennyh mnogokristal'nyh rekonfiguriruemyh vychislitel'nyh sistem: ot vozdushnogo k zhidkostnomu ohlazhdeniju. Trudy SPIIRAN. 2017. № 1(50). S. 5-31 (in Russian).
- Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoilov V.I. Reconfigurable multipipeline computing structures. New York: Nova Science Publishers. 2012. 330 p.
- Kol'cov V.A., Milov V.R., Shibert R.L. Dinamicheskaja model' processa peregruzki dlja upravlenija manipuljacionnym robotom. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2013. № 7. S. 72-76 (in Russian).