Journal Neurocomputers №3 for 2021 г.
Article in number:
Solving non-standard problems by a computer system
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998554-202103-05
UDC: 004.8
Authors:

A.N. Orekhov

Fund for assistance to the creation and implementation of the computer psyche (Moscow, Russia)

Abstract:

On the one hand, modern psychology presents a wide range of opinions from the complete denial of the possibility of an adequate theoretical description of the mental in mathematical terms to the recognition of the timeliness and even inevitability of such a description. On the other hand, many developers of traditional AI, i.e. systems based on rules, as well as systems based on deep learning networks of artificial neurons, and their various hybrids either use, most often subconsciously, the most primitive psychological concepts, or believe that they do not need psychological knowledge at all. Therefore, the problem consists of two interrelated parts. The first is whether it is possible to create algorithms of human thinking that are adequate to the facts known in psychology on the basis of the general theory of the psyche, which widely uses the mathematical apparatus. The second is whether it is possible to create a computer system based on these algorithms that can solve the most difficult (non-standard) problems in different fields of knowledge, using what most researchers refer to as "common sense".

The goal of the article is to create a computer system capable of solving non-standard problems in natural Russian, using algorithms of human thinking and check its basic parameters.

AlNikOr – computer system is created. AlNikOr can solve non-standard problems in natural Russian, using algorithms of human thinking. Its efficiency is shown by the example of solving a non-standard problem in physics.

Computer systems based on AlNikOr can be used to solve real non-standard problems in various fields of science and technology.

Pages: 43-62
For citation

Orekhov A.N. Solving non-standard problems by a computer system. Neurocomputers. 2021. V. 23. № 3. Р. 44−63.  DOI: https://doi.org/10.18127/j19998554-202103-05 (in Russian).

References
  1. Leontyev A.N. Deyatelnost. soznaniye. lichnost. M.: Politizdat. 1975. (in Russian).
  2. Orekhov A.N. Modelirovaniye psikhicheskikh i sotsialno-psikhologicheskikh protsessov: nomoteticheskiy podkhod: Avtoref. diss. … dokt. psikhol. nauk. M.: 2006. (in Russian).
  3. Jaderberg M., Czarnecki W.M., Dunning I. et al. Human-level performance in first-person multiplayer games with population-based deep reinforcement learning. arXiv:1807.01281v1 [cs.LG] 3 Jul 2018
  4. Ivanov A.I., Yazov Yu.K. Rost skorosti programmirovaniya biometricheskikh prilozheniy pri ispolzovanii spetsialnykh yazykov avtomaticheskogo obucheniya iskusstvennykh neyronnykh setey bolshoy razmernosti. Tr. nauch.-tekhn. konf. klastera penzenskikh predpriyatiy. obespechivayushchikh bezopasnost informatsionnykh tekhnologiy. Penza: 2012. T. 8. S. 53–55. [Elektronnyy resurs]. – URL: http://pniei.rf/activity/science/BIT/T8-p53.pdf (in Russian).
  5. Ivanov A.I. Podsoznaniye iskusstvennogo intellekta: programmirovaniye avtomatov neyrosetevoy biometrii yazykom ikh obuche-niya. Penza: Izd-vo OAO «PNIEI». 2012 (in Russian).
  6. Brown T.B., Mann B., Ryder N. et al. Language Models are Few-Shot Learners arXiv:2005.14165v4. 2020
  7. [Elektronnyy resurs]. – URL: https://sbercloud.ru/ru/warp/gpt-3
  8. Hutson M. Robo-writers: the rise and risks of language-generating AI. Nature. 2021. V. 591. P. 22–25.
  9. Copi.ai [Электронный ресурс]. – URL: https://www.copy.ai
  10. Cook S. The complexity of theorem proving procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing. 1971. P. 151–158.
  11. Orekhov A.N., Orekhov S.A. Kulturno obuslovlennyye znacheniya i lichnostnyye smysly v kompyuternoy psikhike. Plenarnyy dokl. XII Vseros. nauch. konf «Neyrokompyutery i ikh primeneniye». 2014. – [Elektronnyy resurs]. – URL: http://it.mgppu.ru/upload/iblock/d4c/program_NKP_2014.pdf (data obrashcheniya: 10.04.2021) (in Russian).
  12. Orekhov A.N. Obucheniye i samoobucheniye sistemy znaniy kompyuternoy psikhiki. – [Elektronnyy resurs]. – URL: http://libed.ru/konferencii-bezopasnost/405973-2-xi-vserossiyskaya-nauchnaya-konferenciya-neyrokompyuteri-primenenie-marta-2013goda-tezisi-dokladov-moskva-2013.php (data obrashcheniya: 09.04.2021) (in Russian).
  13. Orekhov A.N. Kompyuternaya psikhika 2017: sostoyaniye i gumanitarnyye perspektivy. Chelovek. iskusstvo. vselennaya. 2017. № 1.  S. 210–222 (in Russian).
  14. Orekhov A.N. Kompyuternaya lichnost: preimushchestva i nedostatki. Tr. XV Vseros. nauch. konf «Neyrokompyutery i ikh primeneniye». 2017. S. 125–126 (in Russian).
  15. Orekhov A.N., Semenov D.V. Issledovaniye zavisimosti mezhdu semanticheskimi i protsessualnymi kharakteristikami predstav-leniy v matematicheskoy sinteticheskoy teorii psikhicheskikh protsessov. Doklady Ukrainskoy akademii nauk. 1988. A(9). S.78–82 (in Russian).
Date of receipt: 28.04.2021
Approved after review: 11.05.2021
Accepted for publication: 25.05.2021