350 rub
Journal Neurocomputers №4 for 2019 г.
Article in number:
User interfaces, biomechanics and operators health
Type of article: scientific article
DOI: 10.18127/j19998554-201904-05
UDC: 004.383.8.032.26; 613.865; 573.7
Authors:

I.V. Stepanyan — Dr.Sc. (Biol.), Ph.D. (Eng.), Leading Research Scientist, Laboratory of biomechanics, Research Institute for Machine Science named after A.A. Blagonravov (Moscow); Research Institute of Occupational Health named after Academician N. F. Izmerov (Moscow) State Conservatory named after P.I. Tchaikovsky (Moscow) 

E-mail: neurocomp.pro@gmail.com

Abstract:

Problem statement: modern computer user interfaces are designed to facilitate the interaction of a person with a computer, mobile device or an entire cyber-physical system. However, such an interaction often causes significant harm to human health when solving practical problems. This is due to physiological, biomechanical, and a number of other reasons, including the user’s lack of awareness of safe work, irregular working hours, the absence of clear rules, recommendations and standards for the development of user interfaces, and the lack of mechanisms to control the health of operators in the interfaces themselves.

Purpose: to analyse the ergonomic qualities of user interfaces of various manufacturers, to demonstrate the existence of  scenarios for their use with health risks and to develop principles and hygienic criteria for evaluating user interfaces to maintain health and increase labor efficiency.

Results: the article analyses user interfaces and their ergonomic qualities, which showed the existence of adverse scenarios of their use with risks to the health of operators. The biomechanical mechanisms associated with the integration of user interfaces in information systems are identified. The role of ergonomic characteristics of user interfaces for their safe and efficient use is shown. To ensure adequate physical and mental stress on users and operators, as well as to prevent emotional stress, the development of principles and hygienic criteria for evaluating user interfaces is proposed.

Pages: 22-28
References
  1. Buhtiyarov I.V., Denisov E.I., Eremin A.L. Osnovy informacionnoj gigieny: koncepcii i problemy innovacij. Gigiena i sanitariya. 2014. №4. S. 5−9 (In Russian).
  2. Denisov E.I., Eremin A.L., Sivochalova O.V. Informacionnaya gigiena i regulirovanie informacii dlya uyazvimyh grupp naseleniya. Gigiena i sanitariya. 2014. №5. S. 43−49 (In Russian).
  3. Denisov E.I., Prokopenko L.V., Eremin A.L., Kur'erov N.N., Bodyakin V.I., Stepanyan I.V. Informaciya kak fizicheskij faktor: problemy izmereniya, gigienicheskoj ocenki i IT-avtomatizacii. Medicina truda i promyshlennaya ekologiya. 2014. №1. S. 36−43 (In Russian).
  4. Denisov E.I., Pfaf V.F., Stepanyan I.V., Gorohova S.G. Sdvig mediko-biologicheskoj paradigmy: ot gomeostaza k allostazu. Nejrokomp'yutery: razrabotka, primenenie. 2016. №2. S. 16−21 (In Russian). 
  5. The human machine interface as an emerging risk. Topic Centre Risk Observatory: E. Flaspöler, A. Hauke, P. Pappachan,  D. Reinert and others. Available at: https://osha.europa.eu/en /publications/literature_reviews/ HMI_emerging_risk/view (retrived 7 Aug 2018 г.).
  6. Tutherow G.K. Operator Interface Evolution. In: B. G. Lipták. Instrument Engineers Handbook. Process Software and Digital Networks. Boca Roton, Florida: CRC Press, 2002. 
  7. Döös M. & Backström T. Production disturbances as an accident risk. In Kidd, P.T. & Karwowski, W. (Eds.). Advances in agile manufacturing pp. 375-378. IOS Press, London 1994. 
  8. Backström T. & Harms-Ringdahl L. A statistical study of control systems and accidents at work. Journal of Occupational Accidents. 1984. V. 6, P. 201-210.  
  9. Döös, M., Backström T. & Sundström-Frisk C. Human actions and errors in risk handling − an empirically grounded discussion of cognitive action-regulation levels. Safety Science. 2004. V. 42. P. 185−204. 
  10. Nachreiner F., Nickel P and Meyer I. Human factors in process control systems: The design of human–machine interfaces. Safety Science. 2006. V. 44. P. 5−26.
  11. Einarsson S. Human error in high hazard systems: Do we treat the problem in an appropriate way? Journal of Risk Research. 2002. № 2. P. 115−128.
  12. Reinert D., Brun E. & Flaspöler E. Complex machinery needs simple explanation. Safety Scienceю 2007. № 45. P. 579−589.
  13. Karat C.-M. Iterative usability testing of a security application. Proceedings of the Human Factors Society Annual Meeting. – Sage CA: Los Angeles, CA: SAGE Publications, 1989. V. 33. № 5. P. 273−277.
  14. Waters R.M. Use of standards to reduce human error. Safety Engineering and Risk Analysis, ASME, Proceedings of the 1994 International Mechanical Engineering Congress and Exposition. Chicago, IL. Nov 6-11-1994. V. 2. P. 161−166. 
  15. Wilpert B. Psychology and design processes. Safety Science, 2007. V. 45. P. 293-303. 
  16. Einarsson S. Ergonomic guidelines for user-interface design Available at. 1999: http://ergo.human.cornell.edu/AHTutorials/interface.html.
  17. Hix D. & Hartson H.R. Razrabotka pol`zovatel`skix interfejsov: obespechenie udobstva ispol`zovaniya cherez produkt i process. NY, Wiley. 1993. Gl. 2. 
  18. Dolgov P.P., SHalumov V.G. Ergonomika i yuzabiliti pol'zovatel'skogo interfejsa programmnogo obespecheniya diagnostirovaniya i upravleniya slozhnymi tekhnicheskimi ob"ektami. Available at:http://forum-nauka.ru/domains_ data/files/22/Dolgov_Shalumov.pdf.
  19. Sakas G. Trends in medical imaging: from 2Dto 3D. Computers & Graphics, 2002. № 26. P. 577-587. 
  20. Stepanyan I.V., Petoukhov S.V. The matrix method of representation, analysis and classification of long genetic sequences. Available at: http://arxiv.org/pdf/1310.8469.pdf (доступ 7 августа 2018 г.)
  21. Stepanyan I.V., Denisov E.I., Eremin A.L., Bodyakin V.I., Savel'ev A.V. Algoritmy optimizacii intellek¬tual'nogo truda metodami vizualizacii informacii s pomoshch'yu kognitivnoj semanticheskoj grafiki. Nejrokomp'yutery: razrabotka, primenenie. 2014. № 7. S. 53−59 (In Russian).
  22. Bodyakin V.I. Koncepciya postroeniya samoobuchayushchihsya informacionno-upravlyayushchih sistem na baze nejrosemanticheskoj paradigm. Trudy VI mezhdunar. konf. «Upravlenie razvitiem krupnomasshtabnyh sistem» (MLSD'2012). M.: IPU RAN, 2012. T. 2. S. 289−298 (In Russian).
  23. Wheeler J. Information, Physics, Quantum: The Search for Links in Proceedings III International Symposium on Foundations of Quantum Mechanics. Tokyo, 1989. P. 354−358.
  24. von Weizsäcker C.F. Binary alternatives and space-time structure, in Quantum theory and the structures of time and space. – V. 2. Ed. by L. Castell, M. Drieschner, and C.F. Von Weizsäcker. Münhen: Hauser, 1977. P. 86–112. 
  25. Golovach V.V. Dizajn pol'zovatel'skogo interfejsa Iskusstvo myt' slona. 2009. 97 s. Internet-izdanie: http://www.usethics.ru, deus@exmachina.ru. 
  26. Sergeev S.F. Inzhenernaya psihologiya i ergonomika: Ucheb. posobie. M.: NII shkol'nyh tekhnologij, 2008. S. 115−119. 176 s. (In Russian).
  27. Rechinskij A.V., Sergeev S.F. Razrabotka pol'zovatel'skih interfejsov. YUzabiliti-testirovanie interfejsov informacionnyh sistem: Ucheb. posobie. SPb: Izd-vo Politekhnicheskogo un-ta, 2012. 145 s. (In Russian).
  28. Kruglyj A.L. Uchet konechnosti ob"emov informacii. Metafizika. 2018. № 1(27). S. 116−122 (In Russian).
  29. Kruglyj A.L. K voprosu o meste matematiki v informacionnoj vselennoj 2018. № 4(30). S. 75−80 (In Russian).
Date of receipt: 25 февраля 2019 г.