350 rub
Journal Neurocomputers №9 for 2016 г.
Article in number:
Application of text mining for identification and characterization of "sexy" microRNAs
Authors:
A.A. Kechin - Assistant, Laboratory of Pharmacogenomics, Institute of Chemical Biology and fundamental Mekicine of Siberian branch of RAS (Novosibirsk) A.E. Kel - Senior Researcher, Institute of Chemical Biology and Fundamental Medicine of Siberian branch of RAS (Novosibirsk) N.E. Kushlinskii - Dr.Sc. (Med.), Professor, Member-Correspondent of Russian Academy of Sciences, Head of the Clinical Biochemistry Laboratory, N.N. Blokhin Russian Cancer Research Center (Moscow) M.L. Filipenko - Ph.Dr. (Biol.), Head of the Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian branch of the RAS (Novosibirsk)
Abstract:
The use of text mining allows us to not only extract the known data published in biomedical texts but also to synthesize new ones. The aim of our study was to identify the most frequently studied microRNAs and summarize the available information about them using PubMed database. For this purpose we performed a text mining of 37127 paper headlines and summaries. Most studied miRNAs were microRNA-21, -155, -34, -146, -200, -29, -17, -125, -122 and -145. We performed visualization of interconnection of miRNA with cellular processes and elements (mRNA transcription, proliferation, apoptosis, differentiation, survival), as well as with tissues and organs (-21 miRNA and miRNA-200 - epithelial tissues, miR-145 and microRNA-34 - with the nervous system; miR-122 - with the liver cells). The resulting aggregated data may be useful for the overall assessment of the role of microRNAs in health and disease.
Pages: 45-56
References

 

  1. John B., Enright A.J., Aravin A., Tuschl T., Sander C., Marks D.S. Human MicroRNA targets // PLoS Biol. 2004. Nov. V. 2 № 11. P. 363.
  2. Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets // Cell. 2005. Jan 14. № 120(1). R. 15-20.
  3. Xie X., Lu J., Kulbokas E.J., Golub T.R., Mootha V., Lindblad-Toh K., Lander E.S., Kellis M. Systematic discovery of regulatory motifs in human promoters and 3\' UTRs by comparison of several mammals // Nature. 2005 Mar 17. № 434(7031). R. 338-45.
  4. Rogaev E.I., Borinskaja S.A., Islamgulov D.V., Grigorenko A.P. MikroRNK cheloveka v norme i patologii // Molekuljarnajabiologija. 2008. T. 42. № 5. S. 751-764.
  5. Rzhetsky A., Iossifov I., Koike T., Krauthammer M., Kra P., Morris M., Yu H., Duboué P.A., Weng W., Wilbur W.J., Hatzivassiloglou V., Friedman C. GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data // J Biomed Inform. 2004 Feb. № 37(1). R. 43-53.
  6. Gerner M., Sarafraz F., Bergman C.M., Nenadic G. BioContext: an integrated text mining system for large-scale extraction and contextualization of biomolecular events // Bioinformatics. 2012. Aug 15. V. 28. № 16. R. 2154-61.
  7. Okazaki N., Ananiadou S., Tsujii J. Building a high-quality sense inventory for improved abbreviation disambiguation // Bioinformatics. 2010. May 1. № 26(9). R. 1246-53.
  8. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology // BMC Syst Biol. 2015. № 9.
  9. Kawasaki H., Taira K. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells // Nature. 2003. Jun 19. V. 423(6942). P. 838-42.
  10. Satta G., Debbia E., Pruzzo C., Calegari L. The peculiar behaviour of coliphage P1vir mutants on restricting hosts // Microbios. 1978. № 22(88). R. 93-102.
  11. Plasterk R.H. RNA silencing: the genome\'s immune system // Science. 2002 May 17. № 296(5571). R. 1263-5.
  12. Sirotkin A.V., Kisová G., Brenaut P., Ovcharenko D., Grossmann R., Mlyncek M. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH // Microrna. 2014. № 3(1). R. 29-36.
  13. Pan Y., Liang H., Chen W., Zhang H., Wang N., Wang F., Zhang S., Liu Y., Zhao C., Yan X., Zhang J., Zhang C.Y., Gu H., Zen K., Chen X. Microrna-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs // RNA Biol. 2015. № 12(3). R. 276-89.
  14. Chen T., Gao F., Feng S., Yang T., Chen M. MicroRNA-134 regulates lung cancer cell H69 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway // BiochemBiophys Res Commun. 2015. Aug 28. № 464(3). R. 748-54.
  15. Zhao H., Wen G., Huang Y., Yu X., Chen Q., Afzal T.A., Luong le A., Zhu J., Ye S., Zhang L., Xiao Q. MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2 // ArteriosclerThrombVasc Biol. 2015 Apr. № 35(4). R. 918-29.
  16. Zhao Z., Ma X., Sung D., Li M., Kosti A., Lin G., Chen Y., Pertsemlidis A., Hsiao T.H., Du L. MicroRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest // RNA Biol. 2015. № 12(5). R. 538-54.
  17. Belgardt B.F., Ahmed K., Spranger M., Latreille M., Denzler R., Kondratiuk N., von Meyenn F., Villena F.N., Herrmanns K., Bosco D., Kerr-Conte J., Pattou F., Rülicke T., Stoffel M. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes // Nat Med. 2015. Jun. V. 21. № 6. R. 619-27.
  18. Ge H., Li B., Hu W.X., Li R.J., Jin H., Gao M.M., Ding C.M. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival // Int J. ClinExpPathol. 2015. Jan 1. V. 8. № 1. R. 800-5.
  19. Maroof H., Salajegheh A., Smith R.A., Lam A.K. MicroRNA-34 family, mechanisms of action in cancer // a review Curr Cancer Drug Targets. 2014. № 14(8). R. 737-51.
  20. Kia R., Kelly L., Sison-Young R.L., Zhang F., Pridgeon C.S., Heslop J.A., Metcalfe P., Kitteringham N.R., Baxter M., Harrison S., Hanley N.A., Burke Z.D., Storm M.P., Welham M.J., Tosh D., Küppers-Munther B., Edsbagge J., Starkey Lewis P.J., Bonner F., Harpur E., Sidaway J., Bowes J., Fenwick S.W., Malik H., Goldring C.E., Park B.K. MicroRNA-122: a novel hepatocyte-enriched in vitro marker of drug-induced cellular toxicity // Toxicol Sci. 2015. Mar. № 144(1). R. 173-85.
  21. Van Caster P., Brandenburger T., Strahl T., Metzger S., Bauer I., Pannen B., Braun S. Circulating microRNA-122, -21 and -223 as potential markers of liver injury following warm ischaemia and reperfusion in rats // Mol Med Rep. 2015 Aug. № 12(2). R. 3146-50.
  22. Bojmar L., Karlsson E., Ellegård S., Olsson H., Björnsson B., Hallböök O., Larsson M., Stål O., Sandström P. // PLoS One. 2013. Dec V. 20. № 8(12).
  23. Droettboom M et al. Matplotlib: v1.4.3. Zenodo. 2015.
  24. Hagberg A.A., Schult D.A., Swart P.J. Exploring network structure, dynamics, and function using NetworkX // In Proceedings of the 7th Python in Science Conference (SciPy2008), GäelVaroquaux, Travis Vaught, and Jarrod Millman (Eds.), (Pasadena, CA USA). Aug 2008. P. 11-15.