350 rub
Journal Neurocomputers №10 for 2016 г.
Article in number:
Calculation of denormalizing factor for cryptographic transformations according to the RSA scheme using minimally redundant modular arithmetic
Authors:
A.A. Kolyada - Dr.Sc. (Phys.-Math.), Associate Professor, Chief Research, Scientntict A.N. Sevchenko Institute of Applied Physics Problems of Byelorussian State University (Minsk) E-mail: razan@tut.by P.V. Kuchynski - Dr.Sc. (Phys.-Math.), Associate Professor, Director of A.N. Sevchenko Institute of Applied Physics Problems of Byelorussian State University (Minsk) E-mail: niipfp@bsu.by N.I. Chervyakov - Dr.Sc. (Eng.), Professor, Head of Department of the Applied Mathematics and Mathematical Modeling, Institute of Mathematics and Natural Sciences, North Caucasus Federal University (Stavropol) E-mail: Chervyakov@yandex.ru
Abstract:
The work is devoted to the problem of a denormalization of base transformations in the RSA cryptosystem with minimum excess modular code organization. To solve this problem we propose a new method, based on the multiplicative-subtractive calculation circuit recursive. The theoretical base of the applied approach is made by the device of interval and modular forms of numbers and interval and index characteristics. The used tools allow to reach essential simplification of the not modular operations which are a part of the synthesized procedure of calculation of denormalizing factor for cryptographic RSA transformations. These op-erations include the operations of multiplication on the modular base of the number system and bringing the accumulated works of the bases to the residue modular cryptosystem. On the set of cryptographic modules 1024-2048 digit bit time the proposed procedure on the PC with the Intel Core i5 processor (frequency of 2.27 GHz) is in the second range.
Pages: 4-12
References

 

  1. Kalenik A.N., Koljada A.A., Koljada N.A., Protko T.G., SHabinskaja E.V. Kompjuterno-arifmeticheskaja i realizacionnaja baza bystrykh procedur umnozhenija po bolshim moduljam na osnove modificirovannojj moduljarnojj skhemy Montgomeri // EHlektronika info. 2012. № 7. C. 114-118.
  2. Kalenik A.N., Koljada A.A., Koljada N.A., CHernjavskijj A.F., SHabinskaja E.V. Umnozhenie i vozvedenie v stepen po bolshim moduljam s ispolzovaniem minimalno izbytochnojj moduljarnojj arifmetiki // Informacionnye tekhnologii. 2012. № 4. S. 37-44.
  3. Koljada A.A., Pak I.T. Moduljarnye struktury konvejjernojj obrabotki cifrovojj informacii. Mn.: Universitetskoe. 1992. 256 s.
  4. Koljada A.A., CHernjavskijj A.F. Integralno-kharakteristicheskaja baza moduljarnykh sistem schislenija // Informatika. 2013. № 1. S. 106-119.
  5. Koljada A.A., CHernjavskijj A.F. Intervalno-indeksnyjj metod chetnogo modulja dlja rascheta integralnykh kharakteristik koda neizbytochnojj MSS s simmetrichnym diapazonom // Doklady NAN Belarusi. 2013. T. 57. № 1. S. 38-45.
  6. Koljada A.A., CHernjavskijj A.F., SHabinskaja E.V. Generirovanie i funkcionalno-strukturnaja optimizacija bazovogo komplekta tablic dlja multiplikativnojj MIMA-skhemy Montgomeri // EHlektronika info. 2013. № 4. S. 35-41.
  7. KHarin JU.S., Bernik V.I., Matveev G.V. i dr. Matematicheskie i kompjuternye osnovy kriptologii. Mn.: Novoe znanie. 2003. 382 s.
  8. CHervjakov N.I. i dr. Primenenie iskusstvennykh nejjronnykh setejj i sistemy ostatochnykh klassov v kriptografii. M.: Fizmatlit. 2012. 280 s.
  9. CHernjavskijj A.F., Koljada A.A. Vychislenie integralnykh kharakteristik minimalno izbytochnogo moduljarnogo koda // Doklady NAN Belarusi. 2015. T. 59. № 6. S.40-46.