350 rub
Journal Neurocomputers №8 for 2015 г.
Article in number:
Changes in the number of neuronal gap junctions after cerebral ischemia in rats
Authors:
N.A. Loginova - Ph.D. (Biol.), Scientist, Laboratory of Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology of RAS (Moscow, Russia). E-mail: nadinvnd@yandex.ru N.V. Panov - Assistant, Laboratory of Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology of RAS (Moscow, Russia). E-mail: nikolay.panov1966@yandex.ru A.A. Prokuratova - Junior Researcher, Laboratory of Functional Neurocytology, Institute of Higher Nervous Activity and Neurphysiology of RAS (Moscow, Russia). E-mail: unsinn@yandex.ru N.S. Kositsyn - Dr.Sc. (Biol.), Professor, Honored Scientist of Russian Federation, Chief Researcher, Laboratory of Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology of RAS (Moscow, Russia). E-mail: nikolay.kositzyn@mail.ru M.M. Svinov - Ph.D. (Biol.), Head of Laboratory of Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology of RAS (Moscow, Russia). E-mail: svinov@ihna.ru
Abstract:
In the present study we have investigated the distribution of neuronal gap junctions in the rat brain after focal ischemia induced by photochemical thrombosis. We used adult male Wistar rats (m = 300 - 350 g). Cerebral ischemia was produced by photochemical clotting in the somatosensory cortex of the rat brain. The luminous flux power was 1,2mW/mm2 for creating an ischemic focus in surface layers and 2,8 mW/mm2 for creating an ischemic focus in all cortical layers. A day after the thrombosis the brains were used for histological research. Brain slices were stained by immunohistochemical method against Cx36. The average number of neuronal gap junction per one cell was calculated at the brain slices. It was obtained that average number of neuronal gap junctions increased in core at weak ischemia, and in core and penumbra at middle ischemia. Thus, we assume that the strengthening of intercellular communication due to increase of gap junctions may contribute positively to neuroprotection. The reported study was supported by RFBR, research project No. 14-04-32121 mol_a.
Pages: 74-80
References

 

  1. Volkova D.A., Kosicyn N.S., Goloborodko E.V., Loginova N.A., Svinov M.M. EHlektrofiziologicheskie korreljaty morfologicheskikh perestroek pri modelirovanii lokalnojj ishemii raznojj stepeni tjazhesti v sensomotornojj kore krys // Bjulleten ehksperimentalnojj biologii i mediciny. 2013. T. 155. № 2. S. 233-236.
  2. Belluardo N., Mudo G., Trovato-Salinaro A., Gurun L.S. Expression of connexin 36 in the adult and developing rat brain // Brain research. 2000. V. 865. № 1. P. 121-138.
  3. Belousov A.B. Novel model for the mechanisms of glutamate-dependent excitotoxicity: role of neuronal gap junction // Brain research. 2012. № 1487. R. 123-30. doi: 10.1016/j.brainres.2012.05.063. Epub 2012 Jul 5.
  4. Belousov A.B., Fontes J.D. Neuronal gap junctions : making and breaking connections during development and injury // Trends Neurosci. 2013. V. 36. № 4. P. 227-236. doi :10.1016/j.tins.2012.11.001.
  5. Bennett M., Zukin R. Electrical coupling and neuronal synchronization in the mammalian brain // Neuron. 2004. V. 41. № 4. P. 495-511.
  6. Cheung G., Chever O., Rouach N. Connexons and pannexons : newcomers in neurophysiology // Front. Cell Neurosci. 2014. V. 8.R. 348. doi: 10.3389/fncel.2014.00348.
  7. Chew S.S., Johnson C.S., Green C.R., Danesh-Meyer H.V. Role of connexin 43 in central nervous system injury // Experimental neurology. 2010. V. 225. № 2. P. 250-261. doi : 10.1016/j.expneurol.2010.07.014.Epub 2010 Jul 23.
  8. Condorelli D.F., Belluardo N., Trovato-Salinaro A., Mudo G. Expression of Cx36 in mammalian neurons // Brain research Brain Res. Rev. 2000. V. 32. № 1. P. 72-85.
  9. Deans M.R., Gibson J.R., Sellitto C., Connors B.W., Paul D.L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin 36 // Neuron. 2001. V. 71. P. 477-485.
  10. Frantseva M.V., Kokarovtseva L., Naus C.G., Carlen P.L., MacFabe D., Perez Velazquez J.L. Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury // J. Neurosci. 2002. V. 22. № 3. P. 644-653.
  11. Giaume C., Leybaert L., Naus C.C., Saez J.C. Connexin and pannexin hemichannels in brain glial cells : properties, pharmacology, and roles // Front Pharmacol. 2013. doi : 10.3389/fphar.2013.00088.
  12. Nagy J.I., Dudek F.E., Rash J.E. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system // Brain research. Brain research reviews. 2004. V. 47. № 1-3. P. 191-215.
  13. Oguro K., Jover T., Tanaka H., Lin Y., Kojima T., Oguro N., Grooms S.Y., Bennett M.V., Zukin R.S. Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampal and enhanced vulnerability of Cx32 knock-out mice // J. Neurosci. V. 21. № 19. P. 7534-7542.
  14. Paxinos G., Watson C.The rat brain in stereotaxic coordinates, 5th Edition. Elsevier Academic Press. 2005.
  15. Schock S.C., LeBlanc D., Hakim A.M., Thompson C.S. ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro // Biochem. Biophys. Res. Commun. 2008. V. 368. № 1. P. 138-144. doi : 10.1016/j.bbrc.2008.01.054. Epub 2008 Jan 22.
  16. Wang Y., Denisova J.V., Kang K.S., Fontes J.D., Zhu B.T., Belousov A.B. Neuronal jap junctions are required for NMDA receptor-mediated excitotoxicity : implication in ischemic stroke // J. Neurophysiol. 2010. V. 104. № 6. P. 3551-3556.
  17. Watts L.T., Lloyd R., Garling R.J., Duong T. Stroke neuroprotection : targeting mitochondria // Brain Sci. 2013. V. 3. № 2. P. 540-560.