350 rub
Journal Neurocomputers №3 for 2015 г.
Article in number:
Indistinct bayesian mechanisms of the conclusion at differential diagnostics of neuromuscular diseases
Authors:
N.T. Abdullaev - Ph.D.(Eng), Associate Professor, Azerbaijan Technical University (Baku). E-mail: a.namik46@mail.ru G.E. Abdullaeva - Master, Azerbaijan State Oil Academy (Baku) O.A. Dyshin - Ph.D.(Phys.-Mat), Senior Research Scientist, Research Institute - Geotechnological problems of oil, gas and chemistry - (Baku) Kh.Z. Samedova - Ph.D. (Eng), Assistant, Azerbaijan State Oil Academy (Baku)
Abstract:
At creation of diagnostic medical systems rather difficult, and sometimes also it is impossible to give a dot assessment to values of diagnostic signs from available simptomokompleks at each concrete disease of the patient. It is connected with the nature of estimated diseases and sizes to which casual variability owing to a number of specific features of an organism of the patient is always peculiar. In such cases diagnostic signs are, as a rule, represented in the form of sets of intervals or indistinct sets. Use of mathematical apparatus for interval data and data of the indistinct nature allows to describe more adequately a functional condition of studied body. It gives the chance of establishment of reliable estimates of existence at the patient of a diagnosed disease. The mathematical apparatus of Bayesian calculation for cases when values of dynamic diagnostic signs are set in the form of indistinct sets, considers the probabilistic nature of received estimates and leans on basic ratios of probability theory. The probability of a disease of the patient at the set simptomokompleks of values of diagnostic signs pays off by rules of fuzzy logic. Such approach is applied to recalculation of probabilities of a disease of the patient by each separate illness from considered set of neuromuscular diseases. From set of neuromuscular diseases widespread diseases like demiyeliniziruyushchy polyneuropathy, a kubitalny tunnel syndrome and a karpalny tunnel syndrome are considered.
Pages: 39-50
References

 

  1. Parasjuk I.N., Zalozhenkova I.A. Integrirovannaja sistema proverki gipotez: programmno-algoritmicheskie sredstva // Kibernetika i sistemnyjj analiz. 1997. № 5. S. 1-9.
  2. Verevka O.V., Zalozhenkova I.A., Parasjuk I.N. Obobshhenie intervalnykh bajjesovskikh mekhanizmov vyvoda i perspektivy ikh ispolzovanija // Kibernetika i sistemnyjj analiz. 1998. № 6. S. 3-13.
  3. Gupal A.M., Pashko S.V. EHffektivnost bajjesovskogo podkhoda k resheniju zadach klassifikacii i raspoznavanija // Dokl. NAN Ukraini. 1995. № 10. S. 81-84.
  4. Verevka O.V. Vybor upravljajushhikh vozdejjstvijj na baze intervalnykh bajjesovskikh mekhanizmov vyvoda // Problemy programmirovanija. 1999. № 1. S. 92-99.
  5. Verevka O.V., Zalozhenkova I.A., Parasjuk I.N. Intervalnye bajjesovskie mekhanizmy vyvoda i ikh prilozhenija // Problemy programmirovanija. 2000. № 1-2. S. 467-471.
  6. Verevka O.V., Parasjuk I.N. Matematicheskie osnovy postroenija nechetkikh bajjesovskikh mekhanizmov vyvoda // Kibernetika i sistemnyjj analiz. 2002. № 1. S. 105-117.
  7. Verevka O.V., Zalozhenkova I.A., Parasjuk I.N. Bajjesovskie procedury diagnostiki dlja razlichnykh tipov neopredelennosti informacii // Problemy programmirovanija. 2002. № 1-2. S. 328-333.
  8. Komancev V.N., Zabolotnykh V.A. Metodicheskie osnovy klinicheskojj ehlektronejjromiografii. SPb.: Lan. 2001. 460 s.
  9. Nikolaev S.G. Praktikum po klinicheskojj ehlektromiografii. Ivanovo: Ivanov. gos. med. akademija. 2001. 246 s.
  10. Gekht B.M. Teoreticheskaja i klinicheskaja ehlektromiografija. L.: Nauka. 1990. 203 s.
  11. Zenkov L.R., Ronkin M.A. Funkcionalnaja diagnostika nervnykh boleznejj. M.: Medicina. 1991. 640 s.
  12. Kasatkina L.F., Gilvanova O.V. EHlektromiograficheskie metody issledovanija v diagnostike nervno-myshechnykh zabolevanijj. Igolchataja ehlektromiografija. M.: Medicina. 2010. 416 s.
  13. Nechetkie mnozhestva. Teorija i vozmozhnosti: Per. s angl. / Pod red. R. JAgera. M.: Radio i svjaz. 1986. 406 s.
  14. Nechetkie mnozhestva v modeljakh upravlenija i iskusstvennogo intellekta / Pod red. D.A. Pospelova. M.: Nauka. 1986. 312 s.
  15. Borisov A.N., Alekseev A.V., Merkureva G.V. i dr. Obrabotka nechetkojj informacii v sistemakh prinjatija reshenijj. M.: Radio i svjaz. 1989. 304 s.
  16. Prikladnye nechetkie sistemy: Per. s japon. / Pod red. T. Tehrano, K. Asan, M. Sugehno. M.: Mir. 1993. 366 s.
  17. Abdullaev N.T., Dyshin O.A., Abdullaeva G.EH. Netradicionnoe ispolzovanie bajjesovskikh formul dlja differencialnojj diagnostiki nervno-myshechnykh zabolevanijj // Biomedicinskaja radioehlektronika. 2014. № 1. S. 50-58.
  18. KHejj Dzh. Vvedenie v metody bajjesovskogo statisticheskogo vyvoda / Per. s angl. M.: Finansy i statistika. 1987. 335 s.