350 rub
Journal Neurocomputers №9 for 2014 г.
Article in number:
Development of secret sharing schemes for video images based on Hadamard matrix in neural network modular basis
Authors:
N.I. Chervyakov - Dr.Sc. (Eng.), Professor, Head of the Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia. E-mail: k-fmf-primath@stavsu.ru
M.G. Babenko - Ph.D. (Phys.-Math.), Associate Professor, Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia. E-mail: whbear@yandex.ru
Abstract:
The paper proposes a graphical secret sharing scheme using the Hadamard matrix in the modular neural network basis. A feature of this secret sharing scheme is a parallelism of machine operations achieved through a residue number system, which improves the speed of encryption and decryption of video in real time, which is confirmed by simulation. The proposed method is based on the use of Residue Number System in the neural and Hadamard matrices of a given order, allows to build an effective graphical secret sharing schemes with the given threshold.
Pages: 25-29
References

  1. Wallis W.D., Street A.P., Wallis J. Seberry Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices // Lecture Notes in Mathematics. V. 292, Springer-Verlag. Berlin, Heidelberg. N.Y. 1972.
  2. Yang C.H. On Hadamard matrices constructible by two circulant submatrices // Math. Comp. 1971. № 25. R. 181-186.
  3. Turyn R.J. Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encoding // J. Combin. Theory. 1974. V. A16. R. 313-333.
  4. Chervyakov N.I., Sakhnyuk P.A., Shaposhnikov A.V., Makokha A.N. Neyrokomp'yutery v ostatochnykh klassakh. M.: Radiotekhnika. 2003. 272 s.
  5. Chervyakov N.I., Sakhnyuk P.A., Shaposhnikov A.V., Ryadnov S.A. Modulyarnye parallel'nye vychislitel'nye struktury neyroprotsessonykh sistem. M.: FIZMATLIT. 2003. 288 s.
  6. Omondi A., Premkumar Residue Number Systems. Theory and Implementation. London. Imperial College Press. 2007. 295 p.
  7. Chervyakov N.I., Yevdokimov A.A., Galushkin A.I., Lavrienko I.N., Lavrienko A.V. Primenenie iskusstvennykh neyronnykh setey i sistemy ostatochnykh klassov v kriptografii. M.: FIZMATLIT. 2012. 280 s.
  8. Chervyakov N.I., Babenko M.G., Lyakhov P.A. Analiticheskiy obzor metodov opredeleniya pozitsionnykh kharakteristik v sisteme ostatochnykh klassov // Neyrokomp'yutery: razrabotka, primenenie. 2012. № 12. S. 27-30.
  9. URL. http://oeis.org/A147774.