350 rub
Journal Neurocomputers №9 for 2014 г.
Article in number:
Development of pseudorandom number generators on the elliptic curve points based on modular neural networks
Authors:
N.I. Chervyakov - Dr.Sc. (Eng.), Professor, Head of the Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia. E-mail: k-fmf-primath@stavsu.ru
M.G. Babenko - Ph.D. (Phys.-Math.), Associate Professor, Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia. E-mail: whbear@yandex.ru
A.A. Kolyada - Dr.Sc. (Phys.-Math.), Associate Professor, Main Research Scientist, Laboratory of Specialized Computer Systems, A.N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk, Belarus. E-mail: razan@tut.by
A.V. Lavrinenko - Engineer, Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia. E-mail: k-fmf-primath@stavsu.ru
Abstract:
In this paper proposed a method to generate pseudorandom numbers based on elliptic arithmetic. The proposed scheme is based on the transformation to projective coordinates, which eliminates the need for of modular inversion operation and implement a residue number system in the calculations. In this case, the method of modular multiplication in the residue number system based on the Montgomery algorithm, ensures high speed of the generator. A modification of the linear congruent generator on elliptic curve point, which allows to extend the period in comparison with the existing linear congruent generator on elliptic curve points, while maintaining a uniform distribution of sequences and cryptographic security.
Pages: 13-18
References

  1. Koblitz N. Elliptic curve cryptosystems // Mathematics of Computation, 1987. V. 48. № 177. P. 203-209.
  2. Hallgren S. Linear congruential generators over elliptic curve // Cornegie Mellon Univ. 1994. CS-94-M3. P. 1-10.
  3. Ryabko B.Ya., Fionov A N. Kriptograficheskie metody zashchity informatsii: Ucheb. posobie dlya vuzov. M.: Goryachaya liniya-Telekom. 2005. 229 s.
  4. Beelen P., Doumen J. 'Pseudorandom sequences from elliptic curves // Finite Fields with Applications to Coding Theory. Cryptography and Related Areas. Springer-Verlag, Berlin. 2002. R. 37-52.
  5. Mahassni E. El., Shparlinski I.E. On the uniformity of distribution of congruential generators over elliptic curves // Proc. Intern. Conf. on Sequences and their Applications, Bergen 2001. Springer-Verlag, London. 2002. R. 257-264.
  6. Gong G., Berson T.A., Stinson D.A. Elliptic curve pseudorandom sequence generators // Lect. Notes in Comp. Sci. Springer-Verlag, Berlin. 2000. 1758. R. 34-49.
  7. Gong G., Lam C.C.Y. Linear recursive sequences over elliptic curves // Proc. Intern. Conf. on Sequences and their Applications. Bergen 2001. Springer-Verlag, London. 2002. R. 182-196.
  8. Hess F., Shparlinski I.E. On the linear complexity and multidimensional distribution of congruential generators over elliptic curves // Designs, Codes and Cryptography. 2005. № 35. R. 111-117.
  9. Babenko M.G. O vybore koeffitsientov dlya nekotorykh YeS-posledovatel'nostey poryadka 2 // Vestnik Pomorskogo gosudarstvennogo universiteta. Ser. Yestestvennye nauki. № 2. S. 76-79.
  10. Nahassni E.E., Shparlinski I. On the uniformity of distribution of congruential generators over elliptic curves. // In: Sequences and their applications. London: Springer. 2002. P. 257-261.
  11. Gutierrez J., Ibeas A. Inferring sequences produced by a linear congruential generator on elliptic curves missing high-order bits // Designs, Codes and Cryptography. 2007. № 41. P. 199-212.
  12. Kawamura S., Koike M., Sano V., Shimbo A. Cox-Rower architecture for fast parallel Montgomery multiplication // EUROCRYPT - 00: Proc. 19th Int. Conf. Theory and Application of Cryptographic Techniques. 2000. R. 523-538.
  13. Bajard J.-C., Imbert L. Brief contributions: A full RNS implementation of RSA // IEEE Trans. Comput. 2004. V. 53. № 6. R. 769-774
  14. Schinianakis D., Fournaris A., Michail H., Kakarountas A., Stouraitis T. An RNS implementation of an  elliptic curve point multiplier // IEEE Trans. Circuits Syst. I. 2009. V. 56. № 6. R. 1202-1213.
  15. Parker M.G., Benaissa M.  multiplication using polynomial residue number systems // IEEE Trans. Circuits Syst. II. 1995. V. 42. № 11. R. 718-721.
  16. Nozaki H., Motoyama M., Shimbo A., Kawamura S.-I. Implementation of RSA algorithmbased on RNS Montgomery multiplication // Proc. 3rd Int. Workshop on Cryptographic Hardware and Embedded Systems (CHES \'01). 2001.
  17. Guillermin N. A high speed coprocessor for elliptic curvescalar multiplications over , Cryptographic Hardware and Embedded Systems // CHES 2010. 2010. R. 48-64.
  18. Taylor F.J. Residue arithmetic: A tutorialwith examples // IEEE Computer. 1988. V. 17. R. 50-62.
  19. Montgomery P. Modular multiplication withouttrial division // Mathematics of Computation. 1985. V. 44. № 170. R. 149-161.
  20. Schinianakis D., Stouraitis T. A RNS Montgomery multiplication architecture // Proc. IEEE Int. Symp. Circuitsand Systems. 2011. R. 1167-1170.
  21. Schinianakis D. Multifunction Residue Architectures for Cryptography // IEEE transactions on circuits and systems-i: regular papers. 2014. V. 61. № 4. R. 1156-1169.
  22. Bajard J., Didier L.-S., Kornerup P. An RNS Montgomery modular multiplicationalgorithm // IEEE Trans. Comput. 1998. V. 47. № 7. R. 766-776.
  23. Tong-jie Y., Zi-bin D., Xiao-Hui Y. and Qian-jin Z. An improved RNS Montgomerymodular multiplier // Proc. 2010 Int. Conf. ComputerApplication and System Modeling (ICCASM). 2010. V. 10. R. 144-147.
  24. Chervyakov N.I., Lobes M.V. Povyshenie skorosti vypolneniya operatsii modul'nogo vozvedeniya v stepen' mnogorazryadnykh chisel // Infokommunikatsionnye tekhnologii. 2009. T. 7. № 3. S. 8-12.
  25. Posch K., Posch R. Modulo reduction in residue number system // IEEE Trans. Parallel Distrib. Syst. 1995. V. 6. № 5. R. 449-454.
  26. Chervyakov N.I., Sakhnyuk P.A., Shaposhnikov A.V., Makokha A.N. Neyrokomp'yutery v ostatochnykh klassakh. M.: Radiotekhnika. 2003. 272 s.
  27. Chervyakov N.I., Sakhnyuk P.A., Shaposhnikov A.V., Ryadnov S.A. Modulyarnye parallel'nye vychislitel'nye struktury neyroprotsessonykh sistem. M.: FIZMATLIT. 2003. 288 s.
  28. Omondi A., Premkumar. Residue Number Systems. Theory and Implementation. London. Imperial College Press 2007. 295 p.
  29. Chervyakov N.I., Yevdokimov A.A., Galushkin A.I., Lavrienko I.N., Lavrienko A.V. Primenenie iskusstvennykh neyronnykh setey i sistemy ostatochnykh klassov v kriptografii. M.: FIZMATLIT. 2012. 280 s.
  30. Chervyakov N.I., Babenko M.G., Lyakhov P.A. Analiticheskiy obzor metodov opredeleniya pozitsionnykh kharakteristik v sisteme ostatochnykh klassov // Neyrokomp'yutery: razrabotka, primenenie. 2012. № 12. S. 27-30.