350 rub
Journal Neurocomputers №6 for 2014 г.
Article in number:
Hybrid neural network with macrolayers for medical application
Authors:
S. А. Filist - Dr.Sc. (Eng.), Professor, Department of Software of Computing Machinery, South-West State University, Kursk, Russia. E-mail: SFilist@gmail.com
О. V. Shatalova - Ph.D. (Eng.), Associate Professor, Department of Biomedical Engineering, South-West State University, Kursk, Russia. E-mail: Shatolg@mail.ru
М. А. Efremov - Ph.D. (Eng.), Associate Professor, Department of Information Security and Communication Systems, South-West State University, Kursk, Russia. E-mail: Efremov_MA@mail.ru
Abstract:
In work structures of hybrid neural networks with the macrolayers, received on the basis of probabilistic neural networks and indistinct neural networks are considered. Offered structures are intended for the multiagent of systems of classification of cardiovascular diseases.
Pages: 35,69-39,73
References

 

  1. Zhuravlev Yu.I., Nazarenko G.I., Ryazanov V.V., Kleymenova Ye.B. Novyy metod analiza riska razvitiya ishemicheskoy bolezni serdtsa na osnovanii genomnykh i komp'yuternykh tekhnologiy // Kardiologiya. 2011. T. 51. № 2. S. 19-25.
  2. Rassel S., Norvig P. Iskusstvennyy intellekt: sovremennyy podkhod: per. s angl. M.: Vil'yams. 2006. 1408 s.
  3. Terziyan A.V., Vit'ko V.Ya. Veroyatnostnye metaseti dlya resheniya zadach intellektual'nogo analiza dannykh // Iskusstvennyy intellekt. 2002. № 3. S. 188-197.
  4. Kraskovskiy A.B., Shatalova O.V., Filist S.A. Kompleksnaya metodika otsenki riska vozniknoveniya serdechno-sosudistykh zabolevaniy // Perspektivy meditsinskogo priborostroeniya: Izvestiya YuFU. Tekhnicheskie nauki. Tematicheskiy vypusk. Taganrog: Izd-vo TTI YuFU. 2009. № 10 (99). S. 53-58.
  5. Filist S.A., Yemel'yanov S.G., Rybochkin A.F. Neyrosetevoy reshayushchiy modul' dlya issledovaniya zhivykh sistem // Izvestiya Kurskogo gosudarstvennogo tekhnicheskogo universiteta. 2008. № 2(23). S. 77-82.
  6. Filist S.A., Zhilin V.V., Al'-Mualemi Vail Abdulkarim Gibridnyy sposob klassifikatsii biosignalov na osnove tekhnologiy nechetkoy logiki prinyatiya resheniy i neyronnykh setey // Biomeditsinskaya radioelektronika. 2009. № 5. S. 77-82.
  7. Khaykin S. Neyronnye seti: polnyy kurs. M.: Vil'yams. 2006. 1104 s.
  8. Shapovalov V.V., Korestalev A.G., Tishkov A.V. Dvukhurovnevaya sistema prinyatiya resheniy v meditsinskoy informatsionnoy sisteme // Biomeditsinskaya radioelektronika. 2010. № 9. S. 79-88.
  9. Burmaka A.A., Volkov I.I., Ivanov V.A., Serebrovskiy V.I.          Veroyatnostnye seti s makrosloyami v sistemakh podderzhki prinyatiya resheniy po differentsial'noy diagnostike serdechnososudistykh zabolevaniy // Meditsinskaya tekhnika. 2013. № 4. S. 18-20.
  10. Podval'nyy Ye.S. Modeli individual'nogo prognozirovaniya i klassifikatsii sostoyaniy v sistemakh komp'yuter­nogo monitoringa. Voronezh: Izd-vo VGTU. 1998. 127 s.