350 rub
Journal Neurocomputers №8 for 2013 г.
Article in number:
Spike-collective neural computing visual construction super complex neuronal system
Keywords:
non-analytic systems
4D-visualization
animation
active construction
super complexity systems
full-scale facility
prediction of the systems behavior
axons
Ranvier interception
Authors:
V.V. Kolushov, A.V. Savelyev
Abstract:
In the paper the substantiation of the possibility and necessity of another order of information content in the recorded empirical data was making. This allows us apart from the traditional Data mining to produce not only the direct receipt of the findings from the data, extract knowledge, but along with it and produce their active construction of the initial data, one way or another, contained in the empirical data. Propose another alternative way to build (construction) of non-analytic systems using expert data received by full-scale facility as the primary and the continuation of their heuristic with obtaining a numerical and graphical-shaped new data with the prediction of the systems behavior. The description of the work developed by the authors of algorithms and programs for 4D-visualization and animation of axons is resulted. Algorithms that are based on these models allow us to represent the spike as a collective object of cumulative interacting microcomponents from different sites (channel groups domain) of neural membrane. This makes it possible not only to improve the accuracy of simulation, but also to retrieve new data, namely, to observe previously unknown effects. The methodology developed by the authors, specific to a super-constructed simulated living facility, may be general enough to apply to any tissue. This methodology is a conceptual and can be used as a general approach for modeling highly complex systems of space-time and functional dynamics, including morphological, as well as the expansion of the concept of paradigm neurocomputer.
Pages: 60-65
References
- Kolushov V.V. Primenenie nejjrosetevykh algoritmov v realizacii ehkspertnojj tekhnologii modelirovanija kardiodinamiki // Nejjroinformatika - 2004: Sb. dokladov, VI Vseros. NTK. M.: MIFI. 2004. T.2.
- Kolushov V.V., Savelev A.V. Metodologija individualno-kollektivnogo modelirovanija nejjronnojj biovozbudimosti kak novaja nejjrokompjuternaja paradigma // Nejjrokompjutery: razrabotka, primenenie. 2010. № 8. S. 25-34,http://www.ec-ai.ru/default.asp-article=3
- Kolushov V.V., Savelev A.V. 3D informacionnye tekhnologii v animacionnom «ozhivlenii» kletochnojj biotkani // V sb.: Modelirovanie neravnovesnykh sistem. Krasnojarsk: IMV SO RAN. 2011. S. 76-81.
- Petrunin JU.JU. Informacionnye tekhnologii analiza dannykh: Data analysis.M.: KDU. 2010.
- Kolushov V. V. Algoritm ehkspertnogo modelirovanija kardiodinamiki / Svid. o registracii programmy dlja EHVM № 2002611831, 24.10.2002, po zajavke № 2002611616. 2002.
- Kolushov V.V., Savelev A.V. Animacionnoe «ozhivlenie» kletochnojj biotkani na osnove kommunikativnojj globalnojj socio-imitacionnojj metodologii v 3D informacionnykh tekhnologijakh // V monogr. «Nejjrokompjuteryiobshhestvo». LAP LAMBERT Academic Publishing GmbH & Co. KG, 2013.
- Kolushov V.V., Savelev A.V. Novye 3D informacionnye tekhnologii v animacionnom «ozhivlenii» kletochnojj biotkani na osnove kommunikativnojj socio-imitacionnojj metodologii // Nejjrokompjutery: razrabotka, primenenie. 2012. № 8.S. 18-25.
- Kolushov V.V., Savelev A.V. Sociobiologicheskaja metodologija kollektivnogo modelirovanija funkcionirovanija nejjronov kak novaja nejjrokompjuternaja paradigma // V monogr. «Nejjrokompjuternaja paradigma i obshhestvo» / pod red. JU.JU. Petrunina. M.: Izdatelstvo MGU. 2012. S. 213-229. http://derzhavniki21vek.rf/?s=nejjrokompjuternaja+paradigma.
- Peters A., Palay S. L., Webster H de F. The Fine Structure of the Nervous System Neurons and Their Supporting Cells.NY. Oxford: Oxford University Press, 1991.
- Kolushov V.V. Algoritm prostranstvennogo modelirovanija zadach kardiodinamiki. Svid. o registracii programmy dlja EHVM № 2002611830, 24.10.2002, po zajavke № 2002611616. ot 05.09.2002.
- Kolushov V.V., Savelev A.V. Nejjrosetevojj algoritm. Neuralnetworkalgorithm. Svid. o reg. programmy dlja EHVM № 2002612035, zajavka 2002611769. 2002.
- Savelev A. V. Nejjrologicheskie aspekty kletochnojj nejjromatematiki // Iskusstvennyjj intellekt. NAN Ukrainy. Doneck. 2007. № 3. S. 345-357.
- Mezheckaja T.A., Saveleva-Novosjolova N.A., Savelev A.V., Kolesnikov A.A. Ustrojjstvo dlja modelirovanija nejjrona Purkine // A.s. № 1306368. 1986.
- Saveleva-Novosjolova N.A., Savelev A.V.Ustrojjstvo dlja modelirovanija nejjrona // A.s. № 1394975. 1988.
- ZHukov A.G., Kolesnikov A.A., Saveleva-Novosjolova N.A., Savelev A.V. Ustrojjstvo dlja modelirovanija nejjrona // A.s. № 1585811. BI № 30. 1990.
- Hodgkin A.L. The conduction of the nervous impulse. Liverpool University Press, 1964.
- McFadden J. Synchronous firing and its influence on the brain-s electromagnetic field. // J. of Consciousness Studies. 2002. V. 9. №4. P. 23-50.
- Maksimenko E.V. Matematicheskoe modelirovanie ehlektricheskogo impulsa v nervnom volokne // Diss. k.f-m.n. Stavropol: SGU. 2006.
- Kolushov V.V., Savelev A.V. Nejjroinformacionnoe vizualizacionnoe konstruirovanie // V sb. trudov XKH Vseros. seminara «Nejjroinformatika i ee prilozhenija». Krasnojarsk: IMV SO RAN. 2012. S. 46-57.
- www.patenttt.narod.ru
- Savelev A.V.Nejjrobioupravlenie novaja paradigma vychislitelnykh nejjroissledovanijj // XVIII Mezhdunar. mezhdisciplinarnyjj kongress «Nejjronauka dlja mediciny i psikhologii». Sudak, 2012. S. 347-348. http://brainres.ru
- Savelev A.V. Na puti k obshhejj teorii nejjrosetejj. K voprosu o slozhnosti // Nejjrokompjutery: razrabotka, primenenie. 2006. № 4-5. S. 4-14. http://www.radiotec.ru/catalog.php-cat=jr7&art=3665
- Savelev A.V. Nejjron kak iskusstvennoe mikrosoobshhestvo // Iskusstvennye obshhestva. M.: Laboratorija iskusstvennykh obshhestv. 2012. T. 7. № 1-4. S. 64-80. www.artsoc.ru