350 rub
Journal Neurocomputers №6 for 2013 г.
Article in number:
Formation of the rules of fuzzy productions for automated diagnostic system of processing electromyographic signals
Authors:
N.T. Abdullayev, K.Sh. Ismayilova
Abstract:
To reduce the likelihood of misdiagnosis while working with medical data, mathematical tools using fuzzy logic technology are widely used. The use of medical data in the systems of decision support assumes using of both quantitative and qualitative variables. The system for electromyographic researches carries out the function of transformation of a set of values of symptomatic and pathogenetic factors as input variables for diagnosis as output variables. The advantage of fuzzy logic technology is the possibility to describe operation of the system using rules of fuzzy productions, requiring the description input and output variables as linguistic ones. These preliminary actions are governing actions for a doctor during scheduling of the further inspection of the patient in order to reveal the assumed disease. Formation of the rules of fuzzy production is a first stage in the creation of intellectual system for electromyography with the use of fuzzy logic technology. Computer realization of the algorithm is carried out in the software environment МATLAB 7 with the help of FIS toolbox.
Pages: 55-61
References

  1. Abdullaev N.T., Ismajlova K.Sh. Avtomatizirovannaya diagnosticheskaya sistema dlya e'lektromiografii s ispol'zovaniem nechetkoj logiki // Tezisy' dokladov Mezhdunar. nauch. konf. «Avtomatizirovanny'e sistemy' upravleniya i sovremenny'e informaczionny'e texnologii». Tbilisi. 2011. S. 51-52.
  2. Brejkin T.V., Kamalova L.Z. i dr. Proektirovanie e'kspertny'x sistem mediczinskoj diagnostiki na baze nechetkoj logiki s primeneniem metodov sistemnogo modelirovaniya // Upravlenie v slozhny'x sistemax. Ufa. 1999. S. 127-134.
  3. Bashly'kov I.A., Bunyaev V.V., Gadalov V.N. Ispol'zovanie metodov nechetkoj logiki prinyatiya reshenij dlya prog-nozirovaniya i diagnostiki yazvennoj bolezni zheludka //Vestnik novy'x mediczinskix texnologij. 2006. T. XII. № 2. S. 10-12.
  4. Bereznikov A.I., Korenevskij N.A., Tatarenko A.A. Prognozirovanie, diagnostika, profilaktika i lechenie sosudisty'x zabolevanij glaz na osnove nechetkoj logiki prinyatiya reshenij //Vestnik novy'x mediczinskix texnologij. 2006. T. XII. № 2. S. 12-15.
  5. Korenevskij N.A., Filist S.A., Cherny'x E.S. Avtomatizirovannaya sistema diagnostiki anemij na osnove nechetkoj logiki prinyatiya reshenij i algoritmov geneticheskogo tipa // Vestnik novy'x mediczinskix texnologij. 2006. T. XII. № 2. S. 24-28.
  6. Loktyuxin V.N., Mal'chenko S.I., Cherepnin A.A. Osnovy' matematicheskogo obespecheniya podderzhki diagnosticheskix reshenij v biologicheskix sistemax s ispol'zovaniem nechetkoj logiki. Ucheb. posobie. Ryazan': RGRTU. 2009.
  7. Kasatkina L.F., Gil'vanova O.V. E'lektromiograficheskie metody' issledovaniya v diagnostike nervno-my'shechny'x zabolevanij. Igol'chataya e'lektromiografiya. M.: Medika. 2010.
  8. Drivotinov B.G., Apanel' E.N. i dr. Adaptivnaya nejro-nechetkaya model' dlya differenczial'noj diagnostiki podtipov tranzitorny'x ishemicheskix atak // Voennaya mediczina. 2007. № 4. S. 101-106.
  9. http://courses.edu.nstu.ru