350 rub
Journal Neurocomputers №12 for 2013 г.
Article in number:
Neural networks and discriminant functions
Authors:
B. V. Khakimov - Dr.Sc. (Econom.), Advisor of the Federation Council. E-mail: bvhakimov@yandex.ru
D. A. Tarkhov - Dr.Sc. (Eng.), Professor, St. Petersburg State Polytechnical University. E-mail: dtarkhov@gmail.com <> I. M. Mikheev - D.Sc. (Phys.-Math.), Рrofessor, Moscow State Technical University of Civil Aviation. E-mail: igormikheev@mail.ru
Abstract:
The article deals with a geometrical interpretation of the neuron-s models. The interpretation shows some discriminant functions which divides inputs variable-s area into parts with objects in question. The linear discriminant function corresponds to the most of known neuron-s models. A piecewise linear discriminant function corresponds to neural networks, a piecewise polynomial one - to the group method of data handling (GMDH). The neuron-s spline-model is a nonlinear discriminant function which is complicated and to a first approximation can be realized by 3- or 4-layer network of the known neurons. The workabilities of discriminant functions are demonstrated as an adequate and visual instrument of neuron models - and neural networks - analysis, of working on theoretical tasks, improvement of synthesis and setting of neural networks - algorithms.
Pages: 16-21
References

  1. Ivaxnenko A.G. Induktivny'j metod samoorganizaczii modelej slozhny'x sistem. Kiev: Naukova dumka. 1982.
  2. Xakimov B.V., Mixeev I.M. Nelinejnaya model' nejrona - mnogomerny'j splajn // Nejrokomp'yutery': razrabotka, primenenie. 2012. № 7. S. 36-40.
  3. Tarxov D.A. Nejronny'e seti: modeli i algoritmy'. M.: Radiotexnika. 2005.