350 rub
Journal Neurocomputers №10 for 2013 г.
Article in number:
The approximate solution of problems of mathematical physics at the Hopfield neuron network
Keywords:
Hopfield neural network
the continuous Newton-Kantorovich method
numerical methods
Fredholm integral equations
multi-dimensional integrals
Authors:
I.V. Boykov - Dr.Sc. (Phys.-Math.), Professor, Head of Chair «Higher and Applied Mathematics», Penza State University. E-mail: boikov@pnzgu.ru
V.A. Roudnev - Ph.D. (Phys.-Math.), Research Assistant Professor, Department of Physics and Astronomy, University of Kentucky. E-mail: roudnev@pa.uky.ed
A.I. Boykova - Ph.D. (Phys.-Math.), Associate Professor, Associate Professor of Chair «Higher and Applied Mathematics», Penza State University. E-mail: allaboikova@sura.ru
V.A. Roudnev - Ph.D. (Phys.-Math.), Research Assistant Professor, Department of Physics and Astronomy, University of Kentucky. E-mail: roudnev@pa.uky.ed
A.I. Boykova - Ph.D. (Phys.-Math.), Associate Professor, Associate Professor of Chair «Higher and Applied Mathematics», Penza State University. E-mail: allaboikova@sura.ru
Abstract:
In the network of a pilot project to improve school meals in 2008, in Tambov region began to be monitored the health of schoolchildren. In the process of monitoring the measurement of anthropometric parameters, blood pressure, assessment of physical qualification, the distribution of schoolchildren by group health and fitness groups, taking into account both acute and chronic morbidity.
In evaluating the results of measurements used sophisticated and age-related sexual norms, based on the percentile distribution, which is most applicable in medical practice today. In this regard, in monitoring the influx of students there is a problem of automated evaluation of the results of measurements on standards.
To solve this problem in 2011 at the Department of «Biomedical engineering» of Tambov State Technical University has developed an automated information system (AIS) «Children's Health». Mathematical tool for assessing the health status of the AIS «Child» is a relational data model. The basis of the relational data model is the relationship, which basically represent different age and sex norms required in calculating the overall weight and height indices and blood pressure of the child.
In conducting the medical examination system user sets such information of schoolchild as sex, date of birth, height, weight, systolic and diastolic blood pressure, date of examination, etc. The system automatically evaluates the input data and provides user with the result of evaluation of individual student health. In evaluating the results of measurements of relations, in which age-sex norms are laid, relational algebra operations are applied: selection, projection, and connection. Similarly, the system assesses the level of physical qualification of schoolchildren.
Height and weight recorded in the student's AIS via USB-port with electronic Rostom Mr. weights and the complex CMD «Healthy Child», produced by JSC Tulinovka-s instrument-building plant «TVES». At the present, 102 work places AIS «Children's Health» are established in the schools of Tambov region. Using the reduced model, the analysis of individual health state of 51 677 pupils was conducted, which confirms the correctness of the constructed models. Data processing system, building on the relational model, enables the assessment of the health status of schoolchildren in the AIS «Children's Health».
Pages: 13-22
References
- E'terman I.I. Matematicheskie mashiny' neprery'vnogo dejstviya. M.: Mashgiz. 1956.
- Peterson G.R. Basic Analog Computation. N.Y.: The Macmillan Company. 1967.
- Galushkin A.I. Teoriya nejronny'x setej. M.: IPRZhR. 2000.
- Gorban' A.N., Dunin-Barkovskij V.L., Kirdin A.N. i dr. Nejroinformatika. Novosibirsk: Nauka. 1998.
- Tarxov D.A. Nejronny'e seti kak sredstvo matematicheskogo modelirovaniya. M.: Radiotexnika. 2006.
- Gorbachenko V.I. Nejrokomp'yutery' v reshenii kraevy'x zadach teorii polya. M.: Radiotexnika. 2003.
- Gorbachenko V.I., Artyuxina E.V. Obuchenie radial'no-bazisny'x nejronny'x setej pri reshenii differenczial'ny'x uravnenij v chastny'x proizvodny'x // Nejrokomp'yutery': razrabotka, primenenie. 2007. № 9. S. 150-159.
- Vasil'ev A.N., Porubaev F.V., Tarxov D.A. Nejrosetevoe reshenie dvumernoj obratnoj zadachi teploperenosa s tochechny'mi danny'mi izmerenij // Nejrokomp'yutery': razrabotka, primenenie. 2011. № 6. S. 38-44.
- Kolbin I.S., Reviznikov D.L. Reshenie zadach matematicheskoj fiziki s ispol'zovaniem normativny'x radial'no-bazisny'x nejropodobny'x setej // Nejrokomp'yutery': razrabotka, primenenie. 2012. № 2. S. 12-19.
- Gupta M.M., Jin L., Hamma N. Static and Dynamic Neural Networks. From Fundamentals to Advanced Theory. N.Y.: CEE Press. Wiley Interscience. 2005.
- Xajkin S. Nejronny'e seti: polny'j kurs. M.: Vil'yams. 2006.
- Hopfield J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities // Proc. Natl. Acad. Sci. USA. 1982. V. 79. P. 2554 - 2558.
- Hopfield J.J. Neurons with Graded Response have Collective Computational Properties like those of Two-State Neurons // Proc. Natl. Acad. Sci. USA. 1984. V. 81. R. 3088-3092.
- Mishra D., Kalra P.K. Modified Hopfield Neural Network Approach for Solving Nonlinear Algebraic Equations // Eng. Lett. 2007. V. 14. № 1.
- Daleczkij Ju.L., Krejn M.G. Ustojchivost' reshenij differenczial'ny'x uravnenij v banaxovom prostranstve. M.: Nauka. 1970.
- Dekker K., Verber Ja. Ustojchivost' metodov Runge-Kutty' dlya zhestkix nelinejny'x differenczial'ny'x uravnenij. M.: Mir. 1988.
- Korobov N.M. Teoretiko-chislovy'e metody' v priblizhennom analize. M.: Fizmatgiz. 1964.
- Bojkov I.V., Kuchumov E.V. Predstavlenie funkczij mnogix peremenny'x na nejronny'x setyax // Nejrokomp'yutery': razrabotka, primenenie. 2007. № 9.
- Bajborodov S.P. O priblizhenii funkczij mnogix peremenny'x pryamougol'ny'mi summami Valle Pussena // Matematicheskie zametki. 1981. T. 29. № 5. S. 711-730.
- Bojkov I.V., Kuchumov E.V., Lanczova V.A. Iteraczionny'e metody' resheniya operatorny'x uravnenij // Sb. statej III Mezhdunar. nauchno-texnicheskaya konferencziya «Analiticheskie i chislenny'e metody' modelirovaniya estestvennonauchny'x i soczial'ny'x problem». Penza: 2008. S. 91-97.
- Lyusternik L.A., Sobolev V.I. E'lementy' funkczional'nogo analiza. M.: Nauka. 1965.
- Krasnosel'skij M.A., Vajnikko G.M. i dr. Priblizhennoe reshenie operatorny'x uravnenij. M.: Nauka. 1969.
- Kantorovich L.V., Akilov G.P. Funkczional'ny'j analiz. M.: Nauka. 1977.
- Gavurin M.K. Nelinejny'e funkczional'ny'e uravneniya i neprery'vny'e analogi iterativny'x metodov // Izv. vuzov. Matematika. 1958. № 5. S. 18-31.
- Zhidkov E.P., Makarenko G.I., Puzy'nin I.V. Neprery'vny'e sxemy' metoda N'yutona-Kantorovicha v nelinejny'x zadachax fiziki // Fizika e'lementarny'x chasticz i atomnogo yadra. 1973. T. 4. Vy'p. 1. S. 127-166.
- Puzy'nina T.P. Modificzirovanny'e n'yutonovskie sxemy' dlya chislennogo issledovaniya kvantovy'x polevy'x modelej // Avtoreferat diss. d.f.-m.n. Tver'. 2003.
- Bojkov I.V. Ob ustojchivosti reshenij differenczial'ny'x i raznostny'x uravnenij // DAN SSSR. 1990. T. 314. № 6. S. 1298-1300.
- Bojkov I.V. Ustojchivost' reshenij differenczial'ny'x uravnenij. Penza: Izd-vo Penzenskogo gos. un-ta. 2008.
- Xakimov B.V., Mixeev I.N. Nelinejnaya model' nejrona - mnogomerny'j splajn // Nejrokomp'yutery': razrabotka, primenenie. 2012. № 7.
- Xakimov B.V., Tarxov D.A., Mixeev I.N. Nejronny'e seti i diskriminantny'e funkczii // Nejrokomp'yutery': razrabotka, primenenie. 2013. № 10.
- Savel'ev A.V. Obshhaya teoriya samoorganizaczionnogo nejroupravleniya // Nejrokomp'yutery': razrabotka, primenenie. 2013. № 5. S. 3-13.