350 rub
Journal Neurocomputers №4 for 2012 г.
Article in number:
Neural network training in conditions of information deficiency using model data
Keywords:
neural networks
electric power industry
electrical energy losses
model data
modeling
multi-layer perceptron
Authors:
Yu.V. Koltsov, E.V. Boboshko
Abstract:
The paper observes an approach for artificial neural network training with data, obtained from system modeling. This approach allows significantly broadening the area of artificial neural networks application with problems, which have not enough training data.
It can be effective to apply the described approach for neural network training in cases, where observation for the wanted parameters of the real system is either difficult, or wasn-t preformed systematically. The main problem here is an appropriate modeling of the investigated system, by means of those variables, which can be observed well. Then, using the constructed model it is possible to get values of the parameters, required for training set formation.
The process of modeling, wanted model-s parameters calculation and neural network training can be considered as preliminary preparation of data for the mass operation.
As an example of the proposed approach, the problem of electrical energy losses calculation and forecasting in power distribution networks of 0.4-20 kV voltage is observed. Low observability and insufficient information about network operation regimes is common for these classes of networks. A numerical experiment was conducted in order to prove the effectiveness of neural network, trained on model data, application for losses calculations in a particular feeder of 6-10 kV voltage. The neural network approach found out to be more precise, than Average Loads method, which is normative for the concerned class of electrical networks.
Pages: 20-24
References
- Оссовский С. Нейронные сети для обработки информации / пер. с польск. И. Д. Рудинского. М.: Финансы и статистика. 2002.
- Манов Н. А., Чукреев Ю. Я., Успенский М. И. и др. Новые информационные технологии в задачах оперативного управления электроэнергетическими системами. Екатеринбург: Изд-во УрО РАН. 2002.
- Курбацкий В. Г., Томин Н. В. Применение новых информационных технологий в решении электроэнергетических задач // Системы. Методы. Технологии. 2009. № 1. C. 113-119.
- Bourguct, R. E., Antsaklis, P. J., Artificial Neural Networks In Electric Power Industry // Technical Report of the ISIS Group at the University of Notre Dame. 1994. April.
- Железко Ю. С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов. М.: ЭНАС. 2009.
- Заиграева Ю. Б. Нейросетевые модели оценки и планирования потерь электроэнергии в электроэнергетических системах : Автореф. дисс. ... канд. техн. наук: 05.14.02. Новосибирск: Новосибирский гос. техн. ун-т. 2008.
- Герасименко А. А., Федин В. Т. Передача и распределение электрической энергии: Учебное пособие. Ростов-на-Дону: Феникс; Красноярск: Издательские проекты. 2006.