350 rub
Journal Neurocomputers №1 for 2011 г.
Article in number:
Statistical and neural network methods of electoral behavior forecasting: presidential elections in France, 2007
Authors:
Yu. Yu. Petrunin, Yu.A. Zernova
Abstract:
There are several different approaches to forecasting the results of political elections. The first - a questionnaire. It is used as a method of polling the electorate, and various methods of deriving estimates of experts. The second approach to predicting the outcome of political elections can be called mathematical. Most often when this is used as a simple index model and more sophisticated methods of regression analysis and time series. A third approach is based on predicting elections, based on the biography of applicants. In this paper we develop a method of forecasting based on regression analysis, which is supplemented by more powerful methods of finding logical patterns (rules) and neural networks. Regression analysis of the presidential elections in France in 2007 showed that the results of the candidates most significantly influenced by: Royal - the number of people without a diploma and the average number of persons in the family in this region; Sarkozy - the number of citizens born abroad, and the percentage of citizens tenants ; Bayrou - the number of people without a diploma, the level of economic activity and unemployment in the region, Le Pen - the number of people without a diploma, the unemployment rate and the average number of persons in the family in the region. Regression analysis showed that the set of selected variables that characterize the social, economic, demographic and other indicators of regional development, the influence of only 3-4. The coefficient of determination in this case ranges from 0.38 to 0, 62 for different candidates. For the resulting laws to predict the election results almost impossible. To create a more powerful and accurate forecasting models used by the neural network with error back-propagation, which has three hidden layer neurons with different activation functions. The coefficients of determination using this model showed that it had identified patterns cover 93% of the sample for Royal, 95% ? for Sarkozy, 83% ? for Bayrou and 96% for Le Pen. The correlation and prediction of actual results is 0.95 for Royal, Sarkozy to 0.97, 0.85 for Bayrou and Le Pen 0.96. The mean absolute error is 0.457%, 0.322%, 0.516% and 0.284% for Royal, Sarkozy, Bayrou and Le Pen, respectively. The maximum absolute error for each candidate is 2,6%, 1,96%, 3,21% and 1,97% respectively. Thus, the used model of neural network in comparison with regression models showed the best results in coverage of the independent variables, coefficients of correlation and determination, the value of the prediction error.
Pages: 11-24
References
  1. Antonakis, J. and Dalgas, O., Predicting Elections: Child's Play!//Science. 323. 1183. 2009.
  2. Armstrong, J. S. and Graefe, A., Predicting elections from biographical information about candidates // MPRA working paper, Presented at the Symposium on Leadership and Individual Differences, Lausanne. November 2009.
  3. Armstrong, J. S., Green, K. C., Jones, R. J. and Wright, M., Predicting elections from politicians - faces // Available at http://mpra.ub.uni-muenchen.de/9150/. 2009
  4. Europe, № 1. 29 октября 2006.
  5. Fair R. C., Predicting Presidential Elections and Other Things. Stanford University. 2002.
  6. Gelkai, I., La gauche dont reve la droite. Le Monde. 07.04.2007.
  7. http://blog.voynet2007.fr/index.php
  8. http://demo.auracom.fr/goov/2004/
  9. http://francepolitique.free.fr/
  10. http://inflation.free.fr/
  11. http://www.alsapresse.com
  12. http://www.bayrou.fr/
  13. http://www.bayrou.fr/evenements/sortie-officielle-projet-despoir-080307.html
  14. http://www.desirsdavenir.org/index.php-c=sinformer_cequejaidit
  15. http://www.electionpresidentielle.com/
  16. http://www.insee.fr
  17. http://www.liberation.fr/transversales/portraits/244570.FR.php
  18. http://www.marianne2.fr/Le-programme-de-Frederic-Nihous-CPNT-_a898.html
  19. http://www.monchoix.net/article89.html
  20. http://www.obs-delasecurite.com
  21. http://www.pcf.fr
  22. http://www.porlafrance.fr/charte.php
  23. http://www.recensement.insee.fr
  24. http://www.u-m-p.org
  25. Jones, R. J., Armstrong, J. S., Cuzàn, A. G., Forecasting Elections Using Expert Surveys: An Application to the U. S. Presidential Election//Prepared for presentation at the annual meeting of the American Political Science Association, Chicago, 2007. August 30 - September 2.
  26. McCann, S. J., Alternative formulas to predict the greatness of U.S. presidents: Personological, situational, and zeitgeist factors // Journal of Personality and Social Psychology. 1992. No. 62. P. 469-479.
  27. Sarkozy, N., Ensemble tout deviens possible. 2007.
  28. Simonton, D. K., Presidential greatness and performance: Can we predict leadership in the White House - // Journal of Personality. 1981. No. 49. P. 306-322.
  29. Simonton, D. K., Presidential IQ, Openness, Intellectual Brilliance, and Leadership: Estimates and Correlations for 42 U.S. Chief Executives // Political Psychology. 2006. No. 27. P. 511-526.
  30. Todorov, A., Mandisodza, A. N., Goren, A. and Hall, C. C., Inferences of Competence from Faces Predict Election Outcomes // Science. 2005. No. 308. P. 1623-1626.
  31. Ослон А. А. Выборы-2003: предвыборные опросы и прогнозы на фоне исхода выборов. Работа над ошибками (точный прогноз с двумя большими неточностями) // Социология власти. 2004. № 1. C. 25-38.
  32. Петрунин Ю. Ю., Зернова Ю. А. Статистические и нейросетевые методы исследования политической ситуации во Франции на примере региональных выборов 1998 и 2004 годов / Государственное управление. Электронный вестник. Выпуск 14. 2008. Март. http://e-journal.spa.msu.ru/14_2008Petrunin_Zernova.html
  33. http://wciom.ru/novosti/v-centre-vnimanija/publikacija/single/8424.html
  34. http://bd/fom/report/cat/prognoz261107
  35. Jones, R. J., Armstrong, J. S., Cuzàn, A. G.,Combining Methods to Forecast the 2008 Presidential Election: The Pollyvote // Foresight. 2008. No. 12. P. 41-42.
  36. Fair, R. C.,Predicting Presidential Elections and Other Things.Stanford, CA: Stanford University Press, 2001.
  37. Armstrong, J. S., Graefe, A., Predicting Elections from Biographical Information about Candidates // MPRA working paper, Presented at the Symposium on Leadership and Individual Differences, Lausanne, November 2009
  38. Armstrong, J. S.,The Seer-Sucker Theory: The Value of Experts in Forecasting / Technology Review, June/July, 1980. P. 16-24.
  39. Jones, R. J., The state of presidential election forecasting: The 2004 experience // International Journal of Forecasting. 2008. V. 24. I. 2. April-June. P. 310-321.
  40. Nadeaua R.,Lewis-Beckb, M. S.,Bèlangerc, E., Electoral forecasting in France: A multi-equation solution // International Journal of Forecasting. 2010. No. 26. P. 11-18.
  41. Arzheimer, K., Evans, J., Bread and butter à la française: Multiparty forecasts of the French legislative vote (1981-2007) // International Journal of Forecasting, 2010. No. 26. P. 19-31.
  42. Lemennicier, B., Katir-Lescieux, H., Testing the accuracy of the Downs - spatial voter model on forecasting the winners of the French parliamentary elections in May-June 2007 // International Journal of Forecasting, 2010. No. 26. P. 32-41.