350 rub
Journal Neurocomputers №9 for 2010 г.
Article in number:
Lee neural network and its applications
Authors:
N. I. Chervyakov, A. A. Yevdokimov
Abstract:
The associative neural network calculating Lee distance is considered. The neural network allows defining in real time the closest pattern. The developed neural network allows us to find out and correct errors which rates are defined by the number of the control bases; to find out and correct the errors which rate exceeds possibilities of redundancy RNS, but it is possible thanks to the assumption of high probability of errors of small weight; to receive the list of vectors from a working range located on identical distance from an entrance vector that is required at correction of errors of the big rate and the big weight. Whether use of a neural network probably in tasks of phase-coded signals with imposing additive Gauss noise when probability of that noise will translate a symbol in a symbol close on a phase, is higher, than in a symbol with a very different phase. Whether in case of an error of redundancy insufficient for correction the neural network gives possibility of reception of the limited list of the most probable sets of deductions from a working range. As the received list is limited also range is very small, considered neural network can be used for correction of multimedia data (images and video). In multimedia appendices change of color of pixel on one or two units from true value as a result of decoding will not lead to impossibility of recognition of the image. Distance calculation it will be in real time useful and to high-efficiency computing systems with toroidal topology.
Pages: 34-39
References
  1. Берлекэмп Э. Алгебраическая теория кодирования. М.: Мир. 1971.
  2. Bhuyan, L. N., Agrawal, D. P., Generalized hypercube and hyperbus structures for computer network // IEEE Transactions on Computers. 1984. V. C-33. No. 4. P. 323-333.
  3. Cull, P., Larson, S. M., Wormhole routing algorithms for twisted cube networks // In Proc. 6th IEEE Symposium on Parallel and Distributed Processing. 1994. P. 696-703.
  4. Bose, B., Broeg, B., Kwon, Y., Ashir, Y., Lee distance and topological properties of k-ary n-cubes // IEEE Transactions on Computers. 1995. V. 44. No. 8. P. 1021-1030.
  5. Овчаренко Л. А. Вариант реализации основных операций в модулярном арифметическом устройстве // Телекоммуникации. 2001. № 3. С. 8-11.
  6. Овчаренко Л. А. Реализация немодульных операций на когерентных модулярных сумматорах // «50 лет модулярной арифметике». Юбилейная научно-техническая конференция (В рамках VМеждународной научно-технической конференции «Электроника и информатика 2005»). Сборник научных трудов. М.: ОАО «Ангстрэм». МИЭТ. 2006. С. 336-349.
  7. Акушский И. Я., Юдицкий Д. И. Машинная арифметика в остаточных классах. М.: Сов. радио. 1968.
  8. Торгашев В. А. Система остаточных классов и надежность ЦВМ. М.: Сов. радио. 1973.
  9. Червяков Н. И., Сахнюк П. А., Шапошников А. В., Макоха А. Н. Нейрокомпьютеры в остаточных классах. Кн. 11: Учеб. Пособиедлявузов. М.: Радиотехника. 2003.
  10. Shparlinski, I. E., Steinfeld, R., Noisy Chinese Remaindering in the Lee Norm // Journal of Complexity. 2004. V. 20.
    P. 423-437.