350 rub
Journal Neurocomputers №5 for 2010 г.
Article in number:
Neural encryption based on «encoder/decoder» architecture
Authors:
V. P. Fralenko
Abstract:
Introduction
Many cryptographic algorithms for streaming encryption based on industry standards (eg, using Advanced Encryption Standard (AES) [1]), are often not applicable for channels with high throughput due to excessive computational load on the transmitting equipment, which leads to the need for more efficient algorithms that do not require complex computation-intensive [2-6]. These requirements, in our opinion, correspond to the neural network algorithms, because many other algorithms that satisfy the requirement of speed, found unreliable [7-9].
In this paper we propose a neural network approach to data encryption, based on the application architecture «encoder / decoder», which is devoid of the shortcomings of existing approaches.
Principles of neural network encryption
In order to take advantage of the neural network to encrypt the n-ary digital signal having n possible states representing the parameter (a separate element of the signal in accordance with GOST 17657-79), we apply the architecture «encoder / decoder», used for image compression [10-11].
We divide the signal at the letter of dimension k, thus defining the set X is encoded by the letters. The first layer of neurons called «coder» carries bijective transformation (encryption) of input letters of dimension k in the set of Y, consisting of a code of dimension k with letters representing the parameters in the form of floating point numbers. The second layer of neurons called «decoder» produces the opposite bijective mapping from Y to X, called decryption. The number of inputs «encoder» neurons and the number of «decoder» neurons is equal to k, and the number of «encoder» neurons (the length of the secret cryptographic key) is equal to q.
The coding process involves a procedure of simultaneous «encoder» and «decoder» learning. The number of «encoder» neurons chosen iteratively, starting with one neuron. In the case of successful training of the neural network can begin to encryption, otherwise the number of neurons increases and repeated attempt to training. The number of «decoder» neurons thus remains equal to k.
Conclusion
The proposed scheme of neural network encryption has the following advantages:
fast learning alphabets up to tens of thousands of letters (for alphabets of the millions of letters to parallelization of training);
through the use of linkages such as «one to many» in the encoding algorithm achieved increased resistance to cracking (one and the same letter can be encoded in a thousand ways);
small amount of data to store the settings (you need only remember the very representation of the alphabet in a variety Y and «decoder» weight in the case of encryption with the use of stored code vectors and «encoder» and «decoder» weight in the case of encryption with the use of «encoder»).
This work was performed under the project «Neural networks» Federal State program «Kosmos NT».
Pages: 11-16
References
- Advanced Encryption Standard (AES) // http://ru.wikipedia.org/wiki/Rijndael
- Tang L. Methods for encrypting and decrypting MPEG video data efficiently / In Proceedings of the 4th ACM International Multimedia Conference. 1996. P. 219-230.
- Cheng H. and Li X. Partial encryption of compressed images and video / In IEEE Transactions on Signal Processing. 2000. V. 48. P.2439-2451.
- Yen J.-C. and Guo J.-I. A new chaotic key-based design for image encryption and decryption / In Proceedings of 2000 IEEE InternationalConference on Circuits and Systems (ISACS 2000). 2000. V. 4. P.49-52.
- Bhargava B., Shi C., Wang S.-Y. MPEG Video Encryption Algorithms. Multimedia Tools and Applications // Kluwer Academic Publishers. 2004. V. 24. N. 1. P.57-79.
- Chan C.-Ku., Chan C.-Kw., Lee L.-P., and Cheng L.M. Encryption System Based On Neural Network. In Proceedings of IFIP TC6/TC11 Fifth JointWorking Conference on Communications and Multimedia Security (CMS-01). Darmstadt. Germany. May 21-22 (2001). Communications and MultimediaSecurity Issues of the New Century. Kluwer Academic Publishers. Boston. MA. 2001. P.117-122.
- Nahrstedt K., Qiao L. and Tam I. Is MPEG encryption by using random list instead of zigzag order secure - // In IEEE International Symposium onConsumer Electronics, Singapore. 1997.
- Seidel T., Socek D. and Sramka M.Cryptanalysis of video encryption algorithms / In Proceedings of Third Central European Conference on Cryptology(TATRACRYPT 2003). Bratislava. Slovak Republic. June 26-28 (2003). Tatra Mountains Mathematical Publications. 2004. V. 29. P. 1-9.
- Shujun L. and Xuan Z. Cryptanalysis of a chaotic image encryption method / In Proceedings of 2002 IEEE International Symposium on Circuits and Systems (ISCAS 2002). 2002. V. 2. P.708-711.
- Yue T.-W. A Goal-Driven Neural Network Approach for Combinatorial Optimization and Invariant Pattern Recognition. Phd-s Thesis, Department of Computer Engineering. National Taiwan University. Taiwan. 1992.
- Yue T.-W. and Fu L.-C. A Local-Minima-Free Neural Network Approach for Building A/D Converters and associative Adders // IEEE IJCNN-91-Seattle. 1991. V. 2. P.976.
- Yue T.-W. and Fu L.-C. A Complete Neural Network Approach to Solving a Class of Combinatorial Problems // IEEE IJCNN-91-Seattle. 1991. V. 2. P.978.
- Талалаев А.А., Тищенко И.П., Фраленко В.П., Хачумов В.М. Анализ эффективности применения искусственных нейронных сетей для решения задач распознавания, сжатия и прогнозирования // Искусственный интеллект и принятие решений. 2008. № 2. С. 24 - 33.
- Хачумов В.М., Фраленко В.П. Эксперименты с прогнозированием, сжатием и фильтрацией данных на основе нейронных сетей // Нейрокомпьютеры: разработка и применение. 2008. № 9. С. 35 - 42.
- Фраленко В.П. Прогнозирование, сжатие и фильтрация данных на нейронных сетях // Труды XII ежегодной научно-практической конференции Университета города Переславля им. А.К.Айламазяна. 2008. C. 221 - 238.
- Хачумов В.М., Фраленко В.П. Прогнозирование и сжатие данных на основе аппарата нейронных сетей // Высокие технологии, фундаментальные и прикладные исследования, образование. Т.13: Сборник трудов Пятой международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности». Санкт-Петербург / под ред. А.П. Кудинова, Г.Г.Матвиенко. СПб: Изд-во Политехн. ун-та. 2008. С. 126 - 127
- Снегирев В.М., Гвоздяков Ю.А., Ватутин В.М., Круглов А.В., Заднепровский В.Ф., Хачумов В.М., Фраленко В.П. Алгоритмы сжатия данных и прогнозирования внештатных ситуаций при управлении КА с применением искусственных нейронных сетей // Труды всероссийской научно-технической конференции «Актуальные проблемы ракетно-космического приборостроения и информационных технологий». 2009. C. 185 - 194.