350 rub
Journal Neurocomputers №10 for 2010 г.
Article in number:
Estimating factor model goodness-of-fit measure with the aid of Kohonen self-organizing feature maps
Keywords:
factor analysis
wavelet transforms
goodness-of-fit measure
Kohonen self-organizing feature maps
Authors:
P. A. Marmaljuk
Abstract:
Correct usage of the maximum likelihood method criteria described above for both the traditional and alternative confirmatory factor analysis to identify the values of free model parameters and estimate the model goodness-of-fit measure needs testing multivariate normalcy of distributions of either observed variables or residual vector components. This procedure is laborious and frequently impossible because of deficiency in observed data.
To overcome this problem a new technique that uses the capabilities of self-organizing feature maps (SOFM), or Kohonen networks, is proposed.
Advantages of the proposed technique in estimating goodness-of-fit measures are the following:
no need to test multivariate normalcy of distributions of either observed variables or residual vector components;
simple procedure of estimating type 2 statistical errors is available;
it is possible to reveal the most probable percentage component-wise structure of statistically significant deviations for the pseudosolution residual vector;
higher reliability of obtained goodness-of-fit measures because of unrestrictedness of generated random samples of variances and covariances ingressed in the pseudosolution and the following unlimited goodness-of-fit estimation accuracy.
Pages: 53-62
References
- Куравский Л. С., Мармалюк П. А., Абрамочкина В. И., Петрова Е. А. Применение факторного анализа результатов вейвлет-преобразований для исследования динамики психологических характеристик.Экспериментальная психология. 2009. Т. 2. № 1. С. 97-111.
- Куравский Л. С., Мармалюк П. А., Баранов С. Н., Абрамочкина В. И., Петрова Е. А. Факторный анализ результатов вейвлет-преобразований лонгитюдных данных как новый метод исследования динамических характеристик сложных систем // Нейрокомпьютеры: разработка и применение. 2009. № 9. С. 5-19.
- Kuravsky, L. S. and Baranov, S. N.,Development of the wavelet-based confirmatory factor analysis for monitoring of system factors // In: Proc. 5th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies. UnitedKingdom. Edinburgh. 2008. P. 818-834.
- Куравский Л. С., Юревич А. В., Мармалюк П. А., Иванова Е. Г. Факторный анализ показателей нравственного состояния общества в европейских странах // Психологическая наука и образование. 2010. № 1.
- Юревич А. В. Нравственность как психологическая проблема // Вопросы психологии. 2009. № 4. C. 3-13.
- Юревич А. В., Ушаков Д. В. Макропсихология как новая область психологических исследований. Вопросыпсихологии. 2007. № 4. C. 3-15.
- Kuravsky, L. S., Baranov, S. N.and Baranov, N. I., Wavelet-based confirmatory factor analysis for monitoring of system factors: estimating goodness-of-fit measures with the aid of self-organizing feature maps // In: Proc. 6th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies. Ireland. Dublin. June 2009. P. 224-245.
- Бендат Дж., Пирсол А.Прикладной анализ случайных данных. М.: Мир. 1989.