350 rub
Journal Neurocomputers №8 for 2009 г.
Article in number:
Analysis of interactions in complex systems on the basis of fuzzy cognitive and game models
Authors:
V. V. Borisov, E. S. Ustinenkov
Abstract:
The fuzzy cognitive model intended for the analysis of interactions in complex systems is offered. This model takes into account an opportunity of a choice of strategy of agents due to realization of the fuzzy game approach. The following components and procedures for development of the given model are considered: the description of conditions or values of concepts; method of interference of concepts against each other; method of accumulation of direct influence of several concepts on one concept in view of a choice of strategy of the concept (agent); method of indirect influence of concepts; system characteristics of fuzzy cognitive model; model of dynamics. The method of the analysis of interactions in complex systems is developed on the basis of the offered fuzzy cognitive model. This method consist of the following basic stages: construction of model of interaction of agents; modelling of dynamics; calculation of system characteristics of model; the analysis of a coordination of actions of agents on the basis of the designed system characteristics (including the analysis of the contribution of agents in activity of system); detection of types of interaction and roles of agents (including detection of coalitions); formation of coalitions; monitoring of interactions of agents. The fuzzy coalition cognitive model being development of the offered fuzzy cognitive map is developed. This model allows to carry out the monitoring of interactions of agents, including: the analysis of change of structure of coalitions with definition of the reasons of such change; prediction and indication of conflict situations as inside, and between coalitions; decision-making on reduction of risks of undesirable situations and their negative consequences (including, an estimation of realization of these decisions).
Pages: 4-11
References
  1. Тарасов В.Б. От многоагентных систем к интеллектуальным организациям: философия, психология, информатика. М.: ЭдиториалУРСС. 2002. 352 с.
  2. Butnariu D.Fuzzy games: a description of the concept // Fuzzy Sets and Systems. 1978. V. 1. Р. 181-192.
  3. Aubin J.P. Cooperative fuzzy games // Math. Oper. Res. 1981. V. 6. Р. 1-13.
  4. Badredine A.Linguistic fuzzy-logic game theory // Journal of Conflict Resolution. 2006. V. 50. Nо. 1. Р. 28-57.
  5. Nishizaki N.Fuzzy and multiobjective games for conflict resolution. Heidelberg: Physica-Verlag. 2001. 272 p.
  6. Molina E. The equalizer and the lexicographical solutions for cooperative fuzzy games: characterizations and properties // Fuzzy Sets and Systems. 2002. V. 125. Р. 369-387.
  7. KoskoB. Fuzzy cognitive maps // Int. Journal of Man-Machine Studies. 1986. V. 24. Р. 65-75.
  8. ZhangW. R., Chen S. S., Wang W., KingR. S. A cognitive-map-based approach to the coordination of distributed cooperative agents // IEEE Trans. SystemsManCybernet. 1992. V. 22. Р. 103-114.
  9. СиловВ.Б. Принятие стратегических решений в нечеткой обстановке. М.: ИНПРО-РЕС. 1995. 228 с.
  10. CarvalhoJ.P., ToméJ.A. Rule-based fuzzy cognitive maps - expressing time in qualitative system dynamics // In Proc. of the FUZZ-IEEE-2001. Melbourne. Australia. 2001. Р. 280-283.
  11. БорисовВ.В., ФедуловА.С. Обобщенные нечеткие когнитивные карты // Нейрокомпьютеры: разработка, применение. 2004. № 4. С. 3-20.
  12. БорисовВ.В., ФедуловА.С. Устиненков  Е. С. Анализ динамики состояния сложных систем на основе нечетких продукционных когнитивных карт // Нейрокомпьютеры: разработка, применение. 2007. № 1. С. 17-23.