350 rub
Journal Neurocomputers №7 for 2009 г.
Article in number:
Research of the neural predicting veivlet-filter
Authors:
A. I. Koldaev, A. V. Lavrinenko, S. S. Kirievskiy
Abstract:
The model of the neural predicting wavelet-filter is offered. Methods of threshold processing of high-frequency wavelet-coefficients are considered. Differences soft and hard threshold in processing signal with noise are shown. The scheme of training of the neural predicting wavelet-filter is resulted. Influence of value of thresholds is estimated at recalculation of high-frequency wavelet-coefficients. The approximating opportunities of a traditional multilayered network and the wavelet-neural network, used in the predicting filter are investigated. The results of experimental researches showing advantage in speed of a wavelet-neural network in comparison with multilayered neural network are resulted. The parameters of the wavelet -filter with the best parameter of forecasting are certain.
References
  1. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в Matlab. М.: ДМК Пресс. 2005. 304 с.
  2. Воробьев В. И., Грибунин В. Г. Теория и практика вейвлет-преобразования. СПб.: ВУС. 1999.
  3. Крылов В. В., Дли М. И., Голунов Р. Ю. Нечеткая логика и искусственные нейронные сети. М.: Солон. 1996. 348 с.
  4. Adaptive Self-Tuning Neuro Wavelet Network Controllers. Gaviphat Lekutai. The Bradley Department of Electrical Engineering Virginia Polytechnical Institute and State University. Blacksburg, Virginia. 1997.