350 rub
Journal Neurocomputers №5 for 2009 г.
Article in number:
Turing Machine as the Associative Neurocomputer
Authors:
G.M. Alakoz, R.V. Svetlov
Abstract:
It is offered to use hybrid computing technology for the decision of the central problem nanoelectronics, connected with preservation interactions coherence of atomic and molecular structures, as among themselves, and out of nanoclusters. In its frameworks at "microcommand" level of the organization of calculations the associative Turing machine, working in "nonnumerical" operational basis, and since assembler level traditional architecture programmatically operated Computers are used.
Distinctive lines of associative Turing machine:
1. On their basis it is possible to receive effect of an "infinite" tape which is reached at the expense of representation of all operands in the form of lists, that raises accuracy of calculations to any (in engineering sense) sizes. It allows to use, in particular, Turing machine with associative operational basis as the reference Computers supervising computing stability of algorithms, intended for use in programmatically operated Computers with the limited digit grid.
2. Their basis associative memory which is capable to replace with itself operational devices programmatically operated Computers and for which realization are not required "quantum" and boolean gates.
3. Hardware platform of such machines supposes periodic regeneration of the condition (as it takes place in any dynamic memory) that reduces temporal requirements to mechanisms of support coherence in nanoclusters.
4. In nano- and, in particular, supramolecular electronics they permit use of physical mechanisms of transformation of structures of data of type lists, including and their synthesis on contents which can be executed in rate of real time
Pages: 12-24
References
- Siegelmann H., Sontag E. On the computational Power of Neural Nets in: ACM Workshop on Computational Learning, Pittsburg. 1992. P. 440 - 449.
- Гаврилов А.В. Применение постоянно модифицирующихся нейросетей для защиты программного обеспечения // Нейрокомпьютеры: разработка и применение. 2008. № 1 - 2. С. 90 - 101.
- Эббинхауз Г.-Д. Машины Тьюринга и вычислимые функции I. Уточнение понятия алгоритма // Машины Тьюринга и рекурсивные функции.: Пер. с немец. М.: Мир. 1972.
- Пул Ч., Оуэнс Ф. Нанотехнологии. М.: Техносфера. 2004.
- Валиев К.А., Кокин А.А. Квантовые компьютеры: надежды и реальность. Ижевск: НИЦ «Регулярная и хаотичная динамика». 2001.
- Алакоз Г.М. Структурно-параметрический метод хранения и преобразования информации в молекулярной биологии и супрамолекулярной вычислительной технике // Нейрокомпьютеры: разработка и применение. 2007. № 5, №7.
- Кохонен Т. Ассоциативные запоминающие устройства: Пер. с англ. М.: Мир. 1982.
- Basu K. Memory. (http://ranger.uta.edu/~basu/cse3322_fall06/Memory.pdf)
- Mohan N. Low-Power High-Performance Ternary Content Addressable Memory Circuits. University of Waterloo, Ontario, Canada, 2006. (http://www.ece.uwaterloo.ca/~cdr/pubs/nitin_phd.pdf)
- Панкратьев Е.В. Элементы компьютерной алгебры. М.: Из-во МГУ им. М.В. Ломоносова и Интернет-университета информационных технологий (при поддержке Microsoft) 2007.
- Воеводин В.В. Математические модели и методы в параллельных процессах. М.: Наука. 1986.