L.A. Bliznyuk1, E.S. Maksimovich2, N.V. Liubetski3, T.P. Petrochenko4, V.I. Kasko5
1, 3–5 Scientific and Practical Center of the National Academy of Sciences of Belarus for Materials Science (Minsk, Republic of Belarus)
2,3 Belarusian State University (Minsk, Republic of Belarus)
2 Institute of Applied Physics of the National Academy of Sciences of Belarus (Minsk, Republic of Belarus)
1 tanya-petr@physics.by
The development of modern information systems in various fields of science and technology is inextricably linked to the emergence of new intelligent materials, a significant place among which is occupied by ferroelectrics, the main property of which is the ability to change its dielectric constant under the influence of an external control electric field and temperature. This allows their use in high-frequency systems of information transmission and processing, opening up opportunities for the creation of electrically controlled microwave devices, the relevance of which increases every year in the light of the development of strategic security complexes, the development of the "Internet of Things" and the emergence of new generations of communication networks for various purposes.
An important aspect of the use of ferroelectrics in the microwave range is also small losses due to absorption, so when analyzing their high-frequency properties it is necessary to study not only the real but also the imaginary part of the dielectric permittivity, which entails the need to develop new methods of diagnostics of materials, in particular, not only film, but bulk complex structures, as well.
The work deals with the basic methods of measuring dielectric properties of ceramic materials in the microwave range. Ferroelectric ceramics based on the binary system “barium titanate – strontium titanate” have been investigated.
Bulk samples based on the “barium titanate-strontium titanate” solid solution system ВаxSr1–xTiO3 (BST), where x=0; 0.1; 0.3; 0.5; 0.7, have been investigated in the range from 50 GHz to 75 GHz and they were obtained by the conventional ceramic technology.
The results of experimental investigations of properties of ferroelectric samples with dielectric permittivity from 200 to 335 and loss angle tangent up to 0.02 using the Nicholson-Ross-Weir method are presented.
A free space method using dielectric waveguides is proposed to control dielectric parameters of bulk materials with high dielectric permittivity. The use of dielectric waveguides significantly reduces the dimensions of the experimental setup compared to known measurement systems with a small measurement error. The Nicholson-Ross-Weir method works adequately with this system and is quite simple in its implementation. The measurement technique is simple and the controlled samples do not require special fabrication.
It was found that when the dielectric permittivity changes even by a few units from the initial value, the calculated and experimental dependences begin to differ sharply. This shows that even an insignificant deviation of the dielectric permittivity value from the true value is noticeable. According to the results of the above investigations, it is concluded that the measurement error does not exceed 2–3%.
From the analysis of the obtained dependences it is established that with increasing barium content of the ВаxSr1–xTiO3 compound the dielectric loss tangent increases, and at the value x=0.5 the electromagnetic wave is completely absorbed by the sample.
The measurement technique can be used for the “step-by-step” control in the development and production of complex-structured materials.
Bliznyuk L.A., Maksimovich E.S., Liubetski N.V., Petrochenko T.P., Kasko V.I. Measuring the properties of bulk ferroelectrics in millimeters is due to the use of a dielectric waveguide. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 4.
P. 28–37. DOI: https://doi.org/10.18127/ j22250980-202504-03 (in Russian)
- Narang S.B., Bahel S. Low loss dielectric ceramics for microwave applications: a review. Journal of Ceramic Processing Research. 2010. V. 11. № 3. P. 316–321.
- Nenasheva E.A., Kanareykin A.D., Kartenko N.F., Dedyk A.I., Karmanenko S.F. Ceramics Materials Based on (Ba,Sr)TiO3 Solid Solutions for Tunable Microwave Devices. Journal of Electroceramics. 2004. № 13. P. 235–238.
- Nenasheva E.A., Kartenko N.F., Gaidamaka I.M., Trubitsyna O.N., Redozubov S.S., Dedyk A.I., Kanareykin A.D. Low loss microwave ferroelectric ceramics for high power tunable devices. Journal of the European Ceramic Society. 2010. № 30. Р. 395–400.
- Dedyk A.I., Semenov A.A., Pavlova Yu.V., Medvedeva A.A., Pahomov O.V., Myl'nikov I.L., Bogachev Yu.V. Elektroprovodnost' vysokoomnoj keramiki na osnove BSTO c primesyami magniya i marganca. Sb. dokladov XIII Vseros. nauch.-tekhn. konf. «Elektronika i mikroelektronika SVCh». 27–31 maya 2024 g. Sankt-Peterburg. S. 120–123 (in Russian).
- Donchenko A.V., Zargano G.F. P-volnovod, kak izmeritel'naya yachejka ustrojstv opredeleniya dielektricheskoj pronicaemosti materialov. Fizicheskie osnovy priborostroeniya. 2016. T. 5. № 5. S. 40–46 (in Russian).
- Parhomenko M.P., Kalenov D.S., Eremin I.S., Fedoseev N.A., Kolesnikova V.M., Barinov Yu.L. Volnovodnyj metod izmerenij elektromagnitnyh parametrov materialov v SVCh diapazone i ocenka pogreshnosti izmerenij. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2018. № 9. Rezhim dostupa: http://jre.cplire.ru/jre/sep18/6/text.pdf. DOI 10.30898/1684-1719.2018.9 (in Russian).
- Nicolson A.M., Ross G. Measurement of the intrinsic properties of materials by time domain techniques, IEEE Trans. Instrum. Meas. November 1970. V. IM-19. P. 377–382.
- Weir W.B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE. January 1974. V. 62. P. 33–36.
- Sahin S., Nahar N.K., Sertel K. Simplified Nicolson-Ross-Weir Method for Material Characterization Using Single-Port Measurements. IEEE Trans. On terahertz science and technology. 2020. V.10. № 4. P. 404–410. https://doi.org/10.1109/TTHZ.2020.298044.
- Rothwell E.J., Frasch J.L., Ellison S.M., Chahal P., Ouedraogo R.O. Analysis of the Nicolson-Ross-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials. Progress In Electromagnetics Research. 2016. № 157. P. 31–47. DOI: http://dx.doi.org/10.2528/PIER16071706.
- Marakhovskiy M.A., Donchenko A.V., Krutiev S.V. Broadband measurement of the complex permittivity of ferroelectric ceramics in the microwave range. Radiation and Scattering of Electromagnetic Waves. June 24–28. 2019. Divnomorskoe. Krasnodar Region. Russia.
P. 472–475. DOI: 10.1109/RSEMW.2019.8792742. - Rovensky T., Pietrikova A., Ruman K., Kovac O. Microstrip Methods for Measurement of Dielectric Properties in High Frequency Area. 38th Int. Spring Seminar on Electronics Technology. 2015 IEEE. P. 188–191. DOI: 10.1109/ISSE.2015.7247987.
- Saeed K., Shafique M.F., Byrne M.B., Hunter I.C. Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Applications. Applied Measurement Systems. Edited by Md. Zahurul Haq, Published: 24 February 2012. Chapter 15. R. 319–350. DOI: 10.5772/36302.
- Parhomenko M.P., Kalenov D.S., Eremin I.S., N. A. Fedoseev, V. M. Kolesnikova, Kovtykov D.A. Uluchshennyj rezonatornyj metod dlya izmereniya kompleksnoj dielektricheskoj pronicaemosti materialov. Radiotekhnika i elektronika. 2017. T. 62. № 7. S. 651–656 (in Russian).
- Krutskih V.V., Sizyakova A.Yu., Minkara M.S., Ibrahim A.R., Mirzoyan A.E., Ushkov A.N. Shirokopolosnyj metallodielektricheskij volnovodnyj trakt s malymi poteryami KVCh-diapazona. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. 2021. T. 8. Vyp. 3. S. 89–98 (in Russian).
- João G.D., Oliveira J.G. Duarte Junior, Erica N., Pinto M.G., Silva V.P., Neto D’Assunção A.G. A New Planar Microwave Sensor for Building Materials Complex Permittivity Characterization. MDPI, Sensors, Published: 6 November 2020, 15 p., DOI: 10.3390/s20216328.
- Richter Ju., Yazici Ya., Ziegler Ch., Schmidt L.-P. A Broadband Transition between Dielectric and Planar Waveguides at Millimeterwave Frequencies. 33rd European Microwave Conference – Munich 2003. P. 947–950.
- Elhawil A., Koers G., Zhang L., Stiens J., Vounckx R. Reliable method for material characterisation using quasi-optical free-space measurement in W-band. IET Sci. Meas. Technol. 2009. V. 3. № 1. P. 39–50. DOI: 10.1049/iet-smt:2007008.
- Schultz J.W. Focused Beam Methods: Measuring Microwave Materials in Free Space. CreateSpace Publishing. 2012. 142 r.
- Bliznyuk L.A., Lyubeckij N.V., Letko A.K., Petrochenko T.P., Kasko V.I. Svojstva segnetoelektricheskih kompozitov v mikrovolnovom diapazone. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2024. T. 16. № 2. S. 40–47. DOI: https://doi.org/ 10.18127/ j22250980-202402-04 (in Russian).
- http://nano.bsu.by/nem-laboratory/airline.
- Mihnev V.A., Lyubeckij N.V. Polyarizacionnyj metod kontrolya tolshchiny dielektricheskih pokrytij metallov s ispol'zovaniem dielektricheskogo volnovodnogo datchika. Defektoskopiya. 1996. № 7. S. 91–97 (in Russian).
- A.s. № 1753379. Sposob izmereniya tolshchiny dielektricheskih pokrytij metallov i ustrojstvo dlya ego osushchestvleniya. N.V. Lyubeckij, V.A. Mihnev. 1992 (in Russian).

