I.M. Shevchenko1, A.A. Gvozdenko2, M.A. Yasnaya3, A.A. Blinova4, A.V. Prasolova5
1, 2, 4, 5 North Caucasian Federal University (Stavropol, Russia)
3 Branch of JSC "Research and Production Association "Microgen" in Stavropol "Allergen" (Stavropol, Russia)
1 ncstushevchenko@mail.ru, 2 gvozdenko.1999a@gmail.com, 3 jasnaja.marija@mail.ru, 4 nastya_bogdanova_88@mail.ru, 5 prasolova.lina@yandex.ru
Hexacyanoferrates of d-elements (Co, Ni, Fe) are widely used in various processes due to their unique properties—ionic and electronic conductivity, ion-exchange, and electrolytic capabilities. Modification of d-element hexacyanoferrates is a pressing issue, since modification of the cobalt(III) hexacyanoferrate matrix with nanosized silver will allow obtaining a sensor material with high sensitivity and selectivity with respect to the hydrogen reduction reaction in the presence of oxygen under continuous detection conditions.
Objective: to obtain a cobalt(III) hexacyanoferrate matrix uniformly modified with nanosized silver using chemical coprecipitation.
The optimal ratio of starting materials (K3[Fe(CN)6]:Co(NO3)2) was selected to obtain colloidal solutions of cobalt(III) hexacyanoferrate with the smallest dimensions. Using powder diffractometry, the presence of two crystalline phases in the composition of colloidal particles of cobalt (III) hexacyanoferrate was established: Co3[Fe(CN)6]2×H2O with a face-centered cubic lattice (Fm3m) and KCo[Fe(CN)6]×0,5H2O with an orthorhombic crystal lattice (Pmn21). It has been shown that the introduction of silver stabilizes the phase composition of cobalt hexacyanoferrate (III) due to the reaction of the silver precursor (AgNO3) with an excess of [Fe(CN)6]3‒ in the volume of the colloidal solution and in the potential-forming layer of cobalt hexacyanoferrate (III) particles, and the reaction of interaction with KCo[Fe(CN)6] on the surface of particles with the formation of Ag3[Fe(CN)6], which serve as crystallization centers for the formation of silver nanoparticles on the surface of cobalt (III) hexacyanoferrate particles. The data obtained are confirmed by the results of X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectroscopy.
The possibility of uniform modification of the surface of the cobalt hexacyanoferrate (III) matrix by nanoscale silver in aqueous solutions is shown.
Shevchenko I.M., Gvozdenko A.A., Yasnaya M.A., Blinova A.A., Prasolova A.V. Modification of a cobalt hexacyanoferrate matrix with nanosized silver. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 4. P. 5–14. DOI: https://doi.org/10.18127/ j22250980-202504-01 (in Russian)
- Ramadan Chalil Oglou, T. Gamze Ulusoy Ghobadi, Ekmel Ozbay, Ferdi Karadas, Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Analytica Chimica Acta. 2021. Volume 1188. P. 339188. ISSN 0003-2670. https://doi.org/10.1016/j.aca.2021.339188.
- Hsiao Po-Hsuan, Chen, Chia-Yun. Insights for Realizing Ultrasensitive Colorimetric Detection of Glucose Based on Carbon/Silver Core/Shell Nanodots. ACS Applied Bio Materials. 2019. № 2. https://doi.org/10.1021/acsabm.9b00228.
- Shen-Ming Chen. Characterization and electrocatalytic properties of cobalt hexacyanoferrate films. Electrochimica Acta. 1998. V.43. Is. 21–22. P. 3359–3369. ISSN 0013-4686. https://doi.org/10.1016/S0013-4686(98)00074-7.
- Asheesh Kumar A.B., Kanagare S., Banerjee, Pradip Kumar, M. Kumar, Jagannath, V. Sudarsan. Synthesis of cobalt hexacyanoferrate nanoparticles and its hydrogen storage properties. International Journal Hydrogen Energy. 2018. V. 43. Is. 16. P. 7998–8006. ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2018.03.011.
- Kaplun M.M., Smirnov Y.E., Mikli V. et al. Structure of Cobalt exacyanoferrate Films Synthesized from a Complex Electrolyte. Russian Journal of Electrochemistry. 2001. № 37. P. 914–924. https://doi.org/10.1023/A:1011992109433.
- Heli H., Eskandari I., Sattarahmady N., Moosavi-Movahedi A.A. Cobalt nanoflowers: Synthesis, characterization and derivatization to cobalt hexacyanoferrate—Electrocatalytic oxidation and determination of sulfite and nitrite. Electrochimica Acta. 2012. V. 77. P. 294–301. ISSN 0013-4686. https://doi.org/10.1016/j.electacta.2012.06.014.
- Yang M., Jiang J., Yang Y., Chen X., Shen G., Yu R. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens Bioelectron. 2006. Mar. 15. V. 21(9). P. 1791-7. DOI: 10.1016/j.bios.2005.09.004. Epub 2005 Oct. 17. PMID: 16230002.
- De Matteis V. Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics. 2017. № 5(4). P. 29. DOI:10.3390/toxics5040029.
- Sendra M., Yeste M.P., Gatica J.M., Moreno-Garrido I., Blasco J. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere. 2017. № 179. P. 279–289. DOI:10.1016/j.chemosphere.2017.03.123.
- Lee S.H., Jun B.H. Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019. No. 20(4). P. 865.
- Zhang X.F., Liu Z.G, Shen W., Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016. № 17(9). P. 1534. DOI:10.3390/ijms17091534.
- Yang L., Zhen S.J., Li Y.F., Huang C.Z. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. Nanoscale. 2018. Jul 5. V. 10(25). P. 11942–11947. DOI: 10.1039/c8nr02820f. PMID: 29901677.
- Li Lingqiao, Cui Wei, He Zhihui, Xue Weiwei, He Hui. Plasmonic Sensor Based On Silver Nanoparticles For The Detection of Glucose. 2021. 10.21203/rs.3.rs-1121070/v1.
- Nirala N.R., Asiku J., Dvir H., Shtenberg G. N-acetyl-β-d-glucosaminidase activity assay for monitoring insulin-dependent diabetes using Ag-porous Si SERS platform. Talanta. 2022. № 1. V. 239. P. 123087. DOI: 10.1016/j.talanta.2021.123087. Epub 2021 Nov 22. PMID: 34839927.
- GOST 6709-72. Voda distillirovannaya. Tekhnicheskie usloviya. M.: Standartinform. 2007. 12 s. (in Russian)

