350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2025 г.
Article in number:
Electronic structure and magnetic properties of monolayer aluminum nitride with iron adatoms
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202502-04
UDC: 544.225
Authors:

F.I. Zhukov1, A.V. Kudryavtsev2

1,2 MIREA – Russian Technological University (Moscow, Russia)
1 zhukovfe@gmail.com, 2 kudryavcev_a@mirea.ru

Abstract:

Low-dimensional materials have garnered significant attention owing to their unique properties induced by quantum confinement effects. Among the promising directions in this field is the investigation of two-dimensional magnetism. In computational materials science, studies of the electronic and magnetic properties of low-dimensional systems via density functional theory (DFT) are essential, as they facilitate a comprehensive understanding of the mechanisms governing magnetic ordering and interrelation between crystal structure and electronic states.

Purpose – this study aims to elucidate the physical properties of non-magnetic AlN substrate with adsorbed transition metal atoms of Fe. Specifically, we present a theoretical investigation of the electronic structure and magnetic properties of the AlN-Fe system. To determine the most energetically favorable adsorbate configurations on the substrate surface, total energies of systems were calculated and the electronic density of states compared across various configurations. Additionally, the impact of the Hubbard correction on the electronic structure, specifically concerning the strongly correlated d-electrons of iron, was rigorously investigated.
Our results reveal that the most energetically favorable configuration for an iron atom adsorbed on the surface of monolayer aluminum nitride is achieved at the Bridge position when the Hubbard correction is applied, in contrast to the N-top preference observed without this correction. Notably, the Bridge configuration exhibits a maximum total magnetic moment of the unit cell (14.091 μB), with the Hubbard correction significantly enhancing the magnetic moment of the iron d-orbitals from 2.976 μB to 3.445 μB.

These findings establish a clear correlation between the energetically optimal adatom configurations and their magnetic properties, thereby offering a pathway to optimize material characteristics for incorporation into innovative spintronic and microelectronic devices.

Pages: 38-47
For citation

Zhukov F.I., Kudryavtsev A.V. Electronic Structure and Magnetic Properties of Monolayer Aluminum Nitride with Iron Adatoms. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 2. P. 38–47. DOI: https://doi.org/10.18127/ j22250980-202502-04 (in Russian)

References
  1. Khludkov S.S., Prudaev I.A., Root L.O., Tolbanov O.P., Ivonin I.V. Aluminum Nitride Doped with Transition Metal Group Atoms as a Material for Spintronics. Russian Physics Journal. 2021. V. 63(11). DOI:10.1007/s11182-021-02264-y.
  2. Dhiman A.K., Matczak M., Gieniusz R., Sveklo I., Kurant Z., Guzowska U., Maziewski A. Thickness dependence of interfacial Dzyaloshinskii-Moriya interaction, magnetic anisotropy and spin waves damping in Pt/Co/Ir and Ir/Co/Pt trilayers. Journal of Magnetism and Magnetic Materials, 2020. P. 167485. DOI:10.1016/j.jmmm.2020.167485.
  3. Meyer S., Perini M., von Malottki S., Kubetzka A., Wiesendanger R., von Bergmann K., Heinze S. Isolated zero field sub-10 nm skyrmions in ultrathin Co films. Nature Communications. 2019. V. 10(1). DOI:10.1038/s41467-019-11831-4.
  4. Kartsev A., Oleg D.F., Bondarenko N., Kvashnin A.G. Stability and magnetism of FeN high-pressure phases. Physical Chemistry Chemical Physics. 2019. DOI:10.1039/c8cp07165a.
  5. Kartsev A., Augustin M., Evans R.F.L., Novoselov K.S., Santos E.J.G. Biquadratic exchange interactions in two-dimensional magnets. Npj Computational Materials. 2020. V. 6(1). DOI:10.1038/s41524-020-00416.
  6. Ibraheem F., Mahdy M.A., Mahmoud E.A., Ortega J.E., Rogero C., Mahdy I.A., El-Sayed A. Tuning Paramagnetic effect of Co-Doped CdS diluted magnetic semiconductor quantum dots. Journal of Alloys and Compounds. 2020. V. 155196. doi:10.1016/j.jallcom.2020. 155196.
  7. Duy Khanh Nguyen, Tuan V. Vu, Hoat D.M. Antiferromagnetic ordering in the TM-adsorbed AlN monolayer (TM = V and Cr). RSC Advances. 2022. DOI: 10.1039/d2ra00849a.
  8. Zheng F., Wang C., Zhang P. Polymeric Nitrogen Chain Confined Inside a Silicon Carbide Nanotube. Journal of Computational and Theoretical Nanoscience. 2012. V. 9(8). P. 1129–1133. DOI:10.1166/jctn.2012.2151.
  9. Zongyu Huang, Guolin Hao, Chaoyu He, Hong Yang, Lin Xue et al. Density functional theory study of Fe adatoms adsorbed monolayer and bilayer MoS2 sheets. Journal of Applied Physics. 2013. http://dx.doi.org/10.1063/1.4818952.
  10. Legrand J., Pigeat P., Easwarakhanthan T., Rinnert H. Structural and optical properties of magnetron-sputtered Er-doped AlN films grown under negative substrate bias. Applied Surface Science. 2014. V. 307. P. 189–196. DOI:10.1016/j.apsusc.2014.04.013.
  11. Yahaya Saadu I., et al. DFT studies on structural, electronic and optical properties of aluminum nitride nanotube doped by different concentrations of boron. Materials Chemistry and Physics. 2024. DOI: 10.1016/j.matchemphys.2024.129429.
  12. Coey J.M.D. d0 ferromagnetism. Solid State Sciences. 2005. V. 7(6). P. 660–667. DOI:10.1016/j.solidstatesciences.2004.11.012.
  13. Xie D. et al. Investigation of optical parameters of boron doped aluminium nitride films grown on diamond using spectroscopic ellipsometry. International Journal of Nanotechnology. 2015. V. 12(1/2). P. 97. DOI:10.1504/ijnt.2015.066197.
  14. Bannikov V.V., Kudyakova V.S., Elagin A.A., Baranov M.V., Beketov A.R. Elektronnoe stroenie i magnitnye svojstva geksagonal'noj i kubicheskoj modifikacij nitrida alyuminiya, aktivirovannogo primesyami sp-elementov (B, C, O) // Zhurnal strukturnoj himii; UrFU – Ural'skij federal'nyj universitet, Ekaterinburg, 2016. 8. DOI: 10.15372/JSC20160807 (in Russian).
  15. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. 1996ю B 54. P. 11169. DOI: 10.1103/PhysRevB.54.11169.
  16. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996. V. 77. P. 3865. DOI: 10.1103/ PhysRevLett.77.3865.
  17. Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. 1999. B 59. P. 1758. DOI: 10.1103/PhysRevB.59.1758.
  18. Dudarev S.L., Botton G.A., Savrasov S.Y., Humphreys C.J., Sutton A.P. Electron-energy-loss spectra and the structural stability of nickel oxide:  An LSDA+U study. Physical Review B. 1998. V. 57(3). P. 1505–1509. DOI:10.1103/physrevb.57.1505.
  19. Yu J.-X., Zang J. Giant perpendicular magnetic anisotropy in Fe/III-V nitride thin films. Sci. Adv. 2018. V. 4, P. eaar7814. 10.1126/sciadv.aar7814
  20. Karami I., Ketabi S.A. Tuning of the electronic and optical properties of AlN monolayer by fluorination: Study of many-body effects. Computational Condensed Matter. 2021. V. 28. P. e00564. DOI:10.1016/j.cocom.2021.e00564.
  21. Wang S., Tian H., Luo Y., Yu J., Ren C., Sun C., Sun M. First-principles calculations of aluminium nitride monolayer with chemical functionalization. Applied Surface Science. 2019. DOI:10.1016/j.apsusc.2019.02.015.
  22. De Almeida E.F., de Brito Mota F., de Castilho C.M.C., Kakanakova-Georgieva A., Gueorguiev G.K. Defects in hexagonal-AlN sheets by first-principles calculations. The European Physical Journal B. 2012. V. 85(1). DOI:10.1140/epjb/e2011-20538-6
Date of receipt: 24.01.2024
Approved after review: 07.02.2024
Accepted for publication: 04.03.2024