A.G. Gudkov1, V.F. Los2, I.A. Sidorov3, I.O. Porokhov4
1, 3 Bauman Moscow State Technical University (Moscow, Russia)
2 Hyperion Ltd. (Moscow, Russia)
4 Patrice Lumumba Peoples' Friendship University of Russia (Moscow, Russia)
1 profgudkov@gmail.com, 2 lvf1938@mail.ru, 3 igorasidorov@yandex.ru, 4 porokhov60@mail.ru
The paper provides an overview of the antenna systems used for microwave radiometers. Due to the development of precision agriculture, the use of radiometers for monitoring soil moisture relief is becoming relevant. Microminiaturization of antenna systems expands the possibility of using radiometers using unmanned aerial vehicles and ground-based facilities. Compared with satellite and on-board carriers, the use of unmanned aerial vehicles makes it possible to increase the resolution of radiometers, however, in this case, the weight and size limitations on the antenna systems used increase significantly, which requires both new design solutions and the development of design methods, including using the latest advances in methods for optimizing electrodynamic problems.
Gudkov A.G., Los V.F., Sidorov I.A., Porokhov I.O. Antenna systems for microwave radiometers. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 2. P. 5–12. DOI: https://doi.org/10.18127/ j22250980-202502-01 (in Russian)
- Sidorov I.A., Novichihin E.P., Shutko A.M. i dr. SVCh-radiometriya zemnoj i vodnoj poverhnostej: ot teorii k praktike. pod red. V.S. Verby, Yu.V. Gulyaeva i dr. Sofiya: Akademicheskoe izd-vo im. prof. Marina Drinova. 2014. 296 s.: il. (in Russian).
- Yakushev V.P., Yakushev V.V., Matveenko D.A. Rol' i zadachi tochnogo zemledeliya v realizacii nacional'noj tekhnologicheskoj iniciativy. Agrofizika. 2017. №1. S. 51–65 (in Russian).
- Keam R.B. Determination of soil moisture profile from surface reflection coefficient measurements. Subsurface Sensing Technologies and Applications. 2000. V. 1. № 4. P. 453–471.
- Inman-Bamber N.G. Automatic plant extension measurement in sugarcane in relation to temperature and soil moisture. Field Crops Research. 1995. V. 42. № 2-3. P. 135–142.
- Schmitz M., Sourell H. Variability in soil moisture measurements. Irrigation Science. 2000. V. 19. № 3. P. 147–151.
- Schneeberger K., Stamm C., Flühler H., Mätzler C., Lehmann E., Willneff J. Multifrequency ground-based radiometer and insitumeasurements of soil moisture at high temporal resolution. Proceedings of SPIE – The International Society for Optical Engineering (sm. v knigah). 2002. V. 4879. P. 174–183.
- Francesca V., Stefano P., Paola R.P., Osvaldo F. Soil moisture measurements: comparison of instrumentation performances. Journal of Irrigation and Drainage Engineering – ASCE. 2010. V. 136. № 2. P. 81–89.
- Colliander A., Chan S., Kim S.-B., Das N., Yueh S., Njoku E., Cosh M., Bindlish R., Jackson T. Long term analysis of pals soil moisture campaign measurements for global soil moisture algorithm development. Remote Sensing of Environment. 2012. V. 121. P. 309–322.
- Colliander A., Njoku E.G., Chazanoff S., Jackson T.J., Cosh M.H., McNairn H., Powers J. Retrieving soil moisture for nonforested areas using pals radiometer measurements in smapvex12 field campaign. Remote Sensing of Environment. 2016. V. 184. P. 86–100.
- Derksen C., Xu X., Scott Dunbar R., Colliander A., Kim Y., Kimball J.S., Black T.A., Stephens J., Euskirchen E., Langlois A., Roy A., Royer A., Loranty M.M., Marsh P., Rautiainen K. Retrieving landscape freeze/thaw state from soil moisture active passive (smap) radar and radiometer measurements. Remote Sensing of Environment. 2017. V. 194. P. 48–62.
- Ferrazzoli P., Schiavon G., Solimini D., Paloscia S., Pampaloni P., Coppo P. Sensitivity of microwave measurements to vegetation biomass and soil moisture content: a case study. IEEE Transactions on Geoscience and Remote Sensing. 1992. V. 30. № 4. P. 750–756.
- Tsegaye T.D., Coleman T.L., Rajbhandari N., Laymonb C.A., Crossonb W.L. Soil moisture measurement techniques for remote sensing groung truth: evaluation and performance test of soil moisture sensors. In: Proceedings of SPIE – The International Society for Optical Engineering. Series “Earth Surface Remote Sensing” 1997. P. 98–102.
- Hambaryan A.K., Manukyan M.R., Hambaryan V.K., Darbinyan S.A., Arakelyan A.K. An experimental complex for multifrequency, short distance, coincident, microwave active-passive and in-situ combined measurements of soil and snow moistures. In: 58. International Geoscience and Remote Sensing Symposium (IGARSS). Series “2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004”. 2004. P. 1609–1612.
- Chaparro D., Vall-Llossera M., Camps A., Piles M., Rudiger C., Riera-Tatche R. Predicting the extent of wildfires using remotely sensed soil moisture and temperature trends. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016. V. 9. № 6. P. 2818–2829.
- Yee M.S., Walker J.P., Monerris A., Rüdiger C., Jackson T.J. On the identification of representative in situ soil moisture monitoring stations for the validation of smap soil moisture products in Australia. Journal of Hydrology. 2016. V. 537. P. 367–381.
- Yakushev V.P., Yakushev V.V., Matveenko D.A. Rol' i zadachi tochnogo zemledeliya v realizacii nacional'noj tekhnologicheskoj iniciativy. Agrofizika. 2017. № 1. S. 51–65 (in Russian).
- Koshkin E.I. Fiziologiya ustojchivosti sel'skohozyajstvennyh kul'tur. M.: Drofa. 2010. 638 s. (in Russian).
- Kazina M.N. i dr. Sposobnost' Prorostkov ozimoj pshenicy k nizkotemperaturnoj adaptacii v usloviyah izbytochnogo soderzhaniya cinka v korneobitaemoj srede. Fiziologiya rastenij. 2019. T. 66. № 5. S. 375–383 (in Russian).
- Informacionno-izmeritel'nye i upravlyayushchie radioelektronnye sistemy i kompleksy: Monografiya. Pod red. V.S. Verby. M.: Radiotekhnika. 2020. 490 s., il. (Nauch. seriya «Trudy nauchnyh shkol AO «Koncern «Vega») (in Russian).
- Askerova Yu.S., Kurochkin A.P., Mamakov A.I., Ostrovskij A.G., Urzhumcev E.V. Izluchatel' sverhshirokopolosnyh impul'sov dlya videoimpul'snoj skaniruyushchej antennoj reshetki. Antenny. 2016. № 9. S. 42–46 (in Russian).
- Kondrat'eva S.G. Dvuhchastotnaya fazirovannaya mobil'naya antennaya reshetka RLS L-diapazona: Dis. ... kand. tekhn. nauk: 05.12.07. Antenny, SVCh-ustrojstva i ih tekhnologii. MAI (NIU). M. 2015 (in Russian).
- Miloserdov M.S. Bortovaya skaniruyushchaya shirokopolosnaya linejnaya AR decimetrovogo diapazona: Dis. ... kand. tekhn. nauk: 05.12.07. Antenny, SVCh-ustrojstva i ih tekhnologii. MAI (NIU). M. 2014 (in Russian).
- Bagno D.V., Balina I.A., Grinev A.Yu., Zajkin A.E. Dvuhdiapazonnyj shchelevoj metallodielektricheskij neodnorodnyj izluchatel' dlya fazirovannyh antennyh reshetok. Antenny. 2014. № 4. S. 22–27 (in Russian).
- Yun T.-Y., Wang C., Zepeda P. A 10- to 21-GHz, Low-Cost, Multifrequency, and Full-Duplex Phased-Array Antenna System. IEEE Transaction on Antennas Propagation. 2002. V. 50. № 5. P. 641–650.
- Mao C.-X., Gao S., Wang Y. A Shared-Aperture Dual-Band Dual-Polarized Filtering-Antenna-Array with Improved Frequency Response. IEEE Transaction on Antennas Propagation. 2017. V. 65. № 4. P. 1836–1844.
- Kothapudi V., Kumar V. Shared Aperture Antenna Technology for SAR: A Review of the Theory and Applications. Journal of Engineering Science and Technology Review. 2017. V. 10. № 3. P. 41–54.
- Engeta N., Ziolkowski R.W. Metamaterials: physics and engineering exploration. John Wiley & Sons. 2006. P. 440.
- Capolino F. Theory and Phenomena of Metamaterials. CRC Press. 2009.
- Capolino F. Applications of Metamaterials. CRC Press. 2009.
- Yang F. Rahmat-Samii: Electromagnetic band gap structures in antenna engineering. N.Y.: Cambridge University Press. 2009. P. 266.
- Kol'cov Yu.V. Novejshie effekty primeneniya metamaterialov. Uspekhi sovremennoj radioelektroniki. 2021. T. 75. № 7. S. 5–26 (in Russian).
- Kol'cov Yu.V. Metamaterial'nye tekhnologii antennyh reshetok. Uspekhi sovremennoj radioelektroniki. 2017. № 4. S. 30–47 (in Russian).
- Echodyne Releases Breakthrough Ultra–Low C–SWAP Electronically Scanning Radar. URL: http://www.prnewswire.com/news-releases/echodyne-releases-breakthrough-ultra-low-c-swap-electronically-scanning-radar-300259636.html
- Sievenpiper D.F., Zhang L., Broas R.F. High-impedance electromagnetic surfaces with a forbidden frequency band. IEBE Transactions on Microwave Theory and Techniques. 1999. V. 57. № 11. P. 2059–2074.
- Luukkonen O., Simovski C., Granet G. Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Stips-163 Ratches IBE Transaction on Antennas Propagation. 2008. V. 56. № 6. P. 1624–1632.
- Costa I., Genovesi S. Monorchio 4. On the irela Propagation Impedance Frequency Selective Surfaces. IBBE Antennas and Wireless Propagation Letters. 2009. V. 8. P. 1341–1344.
- Expósito-Dominguez G., Fernandez-González J. M., Padilla P., Sierra-Castañer M. EBG Size Reduction for Low Permittivity Substrates. International Journal of Antennas and Propagation. 2017. V. 2012. P. 8.
- Yang F., Rahmat-Samii Y. Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications. IBEE Transaction on Antennas Propagation. 2003. V. 51. № 10. P. 2691–2703.
- McMichael I.T., Zaghloul A.I., Mirotznik M.S. A Method for Determining Optimal EBG Reflection Phase for Low Profile Dipole Antennas. IEEE Transaction on Antennas Propagation. 2013. V. 61. № 5. P. 2411–2417.
- Zhang L., Castaneda J.A., Alexopoulos N.G. Scan Blindness Free Phased Array Design Using PBG Materials. IEEE Transaction on Antennas Propagation. 2004. V. 52. № 8. P. 2000–2007.
- Grinev A.Yu., Kurochkin A.P., Volkov A.P. Nizkoprofil'naya razvyazannaya antennaya sistema na osnove poverhnosti s vysokim impedansom. Antenny. 2014. № 9. S. 4–11 (in Russian).
- Yang F., Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation. 2003. V. 51. № 10. P. 2936–2946.
- Kern D.J., Werner D.H., Monorchio A., Lanuzza L., Wilhelm M.J. The Design Synthesis of Multiband Artificial Magnetic Conductors Using High Impedance Frequency Selective Surfaces. IEEE Transaction on Antennas Propagation. 2005. V. 53. № 1. P. 8–17.
- Werner D.H., Gangul S. An Overview of Fractal Antenna Engineering Research. IEEE Antennas and Propagation Magazine. 2003. February. V.45. № 1. R. 38–57.
- Karmakar A. Fractal antennas and arrays: A review and recent developments. International Journal of Microwave and Wireless Technologies. 2020. July 24. V.13. № 2. P. 1–25.
- Cohen N. Fractal Antennas Part 1. Communications Quarterly. 1995. Summer. V. 5. № 3. P. 7–22.
- Cohen N. Fractal Antennas Part 2. Communications Quarterly. 1996. Summer. V. 6. № 3. P. 53–66.
- Cohen N. Practical Introduction to Fractals: Antennas and Beyond Part 1. Proceedings of the Radio Club of America. 2014. Spring. P. 12–18.
- Anguera J., Andujar A., Puente C. Antenna–Less Wireless: A Marriage Between Antenna and Microwave Engineering. Microwave Journal. 2017. October 12. V. 60. № 10.
- Hindle P. Antenna Technologies for the Future. Microwave Journal. 2018. January. V. 61. № 1. P. 24–40.
- 5G and cellular IoT multiband antenna the size of a rice-grain. eeNews Europe. 2020. March 3.
- Flaherty N. AI-powered antenna integration platform. eeNews Europe. 2024. April 10.
- Xin L., Cao K., Yang X. Two-Layer Stacked Microstrip Cylindrical Conformal Antenna Array With Cross Snowflake Fractal Patches. Microwave Journal. 2018. March 14.
- Deb P.K., Moyra T. Miniaturization of Microstrip Patch Antenna using Fractal Antenna Design. International Journal of Computation Intelligence & IoT. 2018. V. 1. № 1. 4 p.
- Sahoo R., Vakula D. A Cylindrical Wideband Conformal Fractal Antenna for GPS Application. Advanced Electromagnetics. 2017. October. V. 6. № 3.
- El-Khamy S.E., Eltrass A.S., El-Sayed H.F. Design of thinned fractal antenna arrays for adaptive beam forming and side lobe reduction. IET Microwaves Antennas and Propagation. 2018. № 12. P. 435–444.
- Spence T.G., Werner D.H. Genetically optimized fractile microstrip patch antennas. IEEE Antennas Propagation Society Symposium, 20–25 June 2004. Monterey. CA, USA.
- Werner D.H., Gingrich M.A., Werner P.L. A Generalized Fractal Radiation Pattern Synthesis Technique for the Design of Multiband Arrays. 37 p.
- Los' V.F., Porohov I.O., Agasieva S.V., Gudkov G.A. Perspektivy miniatyurizacii razmerov elektricheski malyh antenn v usloviyah ogranichenij na polosy rabochih chastot. Elektromagnitnye volny i elektronnye sistemy. 2023. T. 28. № 4. S. 57–76. DOI 10.18127/j5604128-202304-06 (in Russian).
- Kol'cov Yu.V. Sistemy lokacii bespilotnyh letatel'nyh apparatov. Antennye reshetki. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2024. T. 16. № 2. S. 5–22. DOI: https://doi.org/10.18127/j22250980-202402-01 (in Russian).
- Yuan T., Yuan N., Li L.-W. A Novel Series-Fed Taper Antenna Array Design. IEEE Antennas and Wireless Propagation Letters. 2008. V. 7. P. 362–365.
- Jeong S.-H., Yu H.-Y., Lee J.-E. et. al. A Multi-Beam and Multi-Rnge Radar with FMCW and Digital Beam Forming for Automotive Applications. Progress In Electromagnetics Research. 2012. V. 124. P. 285–299.
- Otto S., Rennings A., Litschke O., Solbach K. A Dual-Frequency Series-Fed Patch Array Antenna. 2009 3rd European Conference on Antennas and Propagation. 23–27 March 2009. Berlin, Germany.
- Chong Y.I., Wenbin D. Microstrip Series Fed Antenna Array for Millimeter Wave Automotive Radar Applications. 2012 IEEE MTT-S Int. Microwave Workshop on Millimeter Wave Wireless Technology and Applications. 18–20 Sept. 2012. Nanjing. China.
- Panchenko B.A., Knyazev S.T., Nechaev Yu.B., Nikolaev V.I., Shabunin S.N. Elektrodinamicheskij raschet harakteristik poloskovyh antenn. M.: Radio i svyaz'. 2002 (in Russian).
- Yufei Fan, Yuandan Dong. A wideband and high gain dual-polarized base station antenna with parasitic patch//978-1- 6654-4228-2/23/©2023 IEEE.
- Yan Yan, Yanhong Xu, Aniji Wang. Design of a broadband dual-polarized magnetoelectric dipole antenna for 3G/4G/5G communication//979-8-3503-3674-0/23/$31.00 ©2023 IEEE.
- Taflove A., Hagness S.C. Computational electrodynamics. The finite-ddifference time-domain method. Artech House. 2005.
- Trikomi F. Integral'nye uravneniya. M.: IL. 1960. 251 s. (in Russian).
- Harrington R.F. Field computation by moment methods. N-Y. Macmillan. 1968.
- Fok V.A. Problema difrakcii i rasprostraneniya elektromagnitnyh voln. M.: Sov. radio. 1970. 517 s. (in Russian).
- Tihonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnyh zadach. M.: Nauka. 1979. 285 s. (in Russian).
- Kolton D., Kress R. Metody integral'nyh uravnenij v teorii rasseyaniya. M.: Mir. 1987 (in Russian).
- Adrian S.B., Dely A., Consoli D. Electromagnetic Integral Equations: Insights in conditioning and preconditioning. IEEE Open Journal of Antennas and Propagation. 2021. V. 2. P. 1144–1174.
- Petersen A.F. Mapped vector basis functions for electromagnetic integral equations. Morgan&Claypool Publishers. 2005. 115 p.
- Kozlov K.V., Los' V.F. Effektivnyj algoritm resheniya mnogoparametricheskih zadach – metod roya pchel. Antenny. 2005. Vyp. 4(95) (in Russian).
- Hoorfar A. Evolutionary programming in electromagnetic optimization: a review. IEEE Trans. on Antennas and Propag. 2007. V. 55. № 3. P. 523–537.
- Hassam Faris, Ibrahim Aljarah et al. Grey Wolf optimizer: a review of recent variants and applications. Neural Computing and Applications. https://doi.org/10.1007/s00521-017-3272-5.
- Yu Li, Xiaoxiao Lin, Jingsen Liu. An improved Grey Wolf optimization algorithm to solve engineering problems. Sustainability. 2021. V. 13. P. 3208.
- Eunice Oluwabunmi, Kewen Xating Wang et al. Pattern synthesis of uniform and sparse linear antenna array using Mayfly algorithm. IEEE Access. DOI: 10.1109/ACCESS. 2021.3083487.
- Hengfeng Wang, Chao Liu, Huaning Wu et al. Optimal pattern synthesis of linear array and broadband design of whip antenna using Grasshopper optimization algorithm. International Journal of Antennas and Propagation. 2020. V. Research article ID 5904018.
- Podinovskij V.V., Nogin V.D. Pareto-optimal'nye resheniya. M.: Nauka. 1982 (in Russian).
- Delgado H.J., Thursby M.H. A novel neural network combined with FDTD for the synthesis of printed dipole antennas. IEEE Trans. on AP. 2005. V. 53. № 7. P. 2231–2235.
- Galushkin A.I., Kazancev P.A., Kozlov K.V., Los' V.F. i dr., Nejrosetevoj sintez mikropoloskovoj antenny, vozbuzhdaemoj koaksial'nym zondom. Antenny. 2007. Vyp. 9(124). S. 35–40 (in Russian).
- Wolpert D.H., Macready W.G. No Free Lunch Theorems for Optimization. IEEE Transactionson Evolutionary Computation. 1997. V. 1. № 1. P. 67–82.
- Los' V.F., Porohov I.O., Agasieva S.V., Gudkov G.A. Perspektivy miniatyurizacii razmerov elektricheski malyh antenn v usloviyah ogranichenij na polosy rabochih chastot. Elektromagnitnye volny i elektronnye sistemy. 2023. T. 28. № 4. S. 57−78. DOI: https://doi.org/10.18127/j15604128-202304-06 (in Russian).

