P.S. Kuznetsov1, A.O. Sinelnikov2, E.J. Gutierrez Benavides3
1 JSC «GOSNIIP» (Moscow, Russia)
2, 3 Patrice Lumumba Peoples' Friendship University of Russia (Moscow, Russia)
1 ps_kuznetsov@mail.ru, 2 sinelnikov-ao@rudn.ru, 3 estebangutierrezrusia@gmail.com
Silicon, traditionally used in semiconductor electronics, is a key element in the development of sensitive components for onboard equipment of spacecraft. However, the lack of clear standards regarding its mechanical properties creates challenges in three-dimensional mathematical modeling and the design of microsystems. In this context, it becomes necessary to investigate methods for measuring the elastic modulus of silicon, which will improve the accuracy and reliability of micromechanical sensors. Additionally, it is essential to consider the micro-sizes of elastic elements that perform the corresponding displacements.
Objective – to analyze methods for measuring the mechanical properties of silicon to enhance the design efficiency and reliability of micromechanical systems used in spacecraft.
The study of contemporary methods for measuring the mechanical properties of silicon used in micromechanical sensors for spacecraft revealed that the choice of measurement method directly affects the accuracy and reliability of the data necessary for designing high-quality microsystems. Static methods, despite their simplicity and accessibility, may not always provide the required accuracy under changing loads and temperatures. Dynamic methods, including resonance and impulse approaches, demonstrate higher sensitivity and may be preferable for complex applications in space.
However, no single method is universal, and their selection should be based on the specific requirements of the project and operating conditions. It is also important to consider the impact of mechanical properties on the durability and stability of micromechanical sensors under extreme conditions of outer space.
Kuznetsov P.S., Sinelnikov A.O., Gutierrez Benavides E.J. The analysis of measuring methods the mechanical properties of silicon in space electronics. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 1. P. 45–55. DOI: https://doi.org/ 10.18127/ j22250980-202501-05 (in Russian)
- Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Soprotivlenie materialov: Uchebnik dlya vuzov. Pod. red. A.V. Aleksandrova. Izd. 3-e, ispr. M.: Vysshaya shkola. 2003. 560 s. (in Russian).
- Bazhenov V.G., Bogdan G.A., Kravchenko M.V. Cifrovaya sistema izmereniya fazovyh sdvigov radioimpul'snyh signalov. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2016. № 4 (46). https://doi.org/10.18454/IRJ.2016.46.195 (in Russian).
- Bolotnov S.A., Nazarov S.I., Sinel'nikov A.O. i dr. Analiz pogreshnostej lazernyh giroskopov pri aktivnoj stabilizacii perimetra. Giroskopiya i navigaciya. 2024. T. 32. № 3(126). S. 3–20 (in Russian).
- Vvedenie v COMSOL Multiphysics. [Elektronnyj resurs]. Rezhim dostupa:https://cdn.comsol.com/doc/5.4/IntroductionToCOMSOL
Multiphysics.ru_RU.pdf (data obrashcheniya: 06.04.2024) (in Russian). - GOST 19658-81. Kremnij monokristallicheskij v slitkah. Tekhnicheskie usloviya. Monocrystalline silicon in ingots. Specifications: gosudarstvennyj standart Soyuza SSR: izdanie oficial'noe: vveden Postanovleniem Gosudarstvennogo komiteta SSSR po standartam ot 27.02.81 № 1090: vzamen GOST 19658-74: vveden 01.01.83 (in Russian).
- Kuznecov A.S. Konechno-elementnoe modelirovanie aviacionnyh konstrukcij v programmnom komplekse MSC NASTRAN: metod. ukazaniya. Sost. A.S. Kuznecov i dr. Samara: Izd-vo Samarskogo gos. aerokosm. un-ta. 2010. 69 s. (in Russian).
- Kuznecov P.S. Voprosy i perspektivy razvitiya mekhatroniki i mikrosistemnoj tekhniki. Nano- i mikrosistemnaya tekhnika. 2024. T. 26. № 4. S. 159–169. https://doi.org/10.17587/nmst.25.159-169 (in Russian).
- Vasin V.A., Ivashov E.N., Kuznecov P.S., Slepcov V.V. Informacionnye tekhnologii proektirovaniya v mikro- i nanoinzhenerii: Ucheb. posobie. V 3-h tomah. Tom 2. Ivanteevka Mos. obl.: Izd-vo NII predel'nyh tekhnologij. 2014. 223 s. (in Russian).
- Landau L.D., Lifshic E.M. Teoriya uprugosti: ucheb. posobie dlya vuzov. Pod red. L.P. Pitaevskogo. Izd. 5-e, ster. M.: Fizmatlit. 2001. 262 s. (in Russian).
- Sinel'nikov A.O., Zapotyl'ko N.R., Zubarev Ya.A., Katkov A.A. Osobennosti primeneniya sitalla SO-115M pri izgotovlenii opticheskih detalej kol'cevyh He-Ne-lazerov. Steklo i keramika. 2023. T. 96. № 5(1145). S. 3–13. DOI 10.14489/glc.2023.05.pp.003-013 (in Russian).
- Starostina Zh.A., Morozov R.V. Raschet konstrukcij metodom konechnyh elementov s ispol'zovaniem prilozheniya APM FEM: Ucheb.-metod. posobie. M.: MADI. 2022. 100 s. (in Russian).
- Timoshenko S.P. Soprotivlenie materialov. M.: Fizmatgiz. 1960–1965. V 2 t. T. 1: Elementarnaya teoriya i zadachi. 1960. 379 s. (in Russian).
- Shklovec A.O. Rabota v CAE-pakete ANSYS MEChANICAL: konstrukcionnyj analiz metodom konechnyh elementov: Metod. ukazaniya. Sost.: A.O. Shklovec, V.S. Melent'ev. Samara: Izd-vo Samarskogo un-ta. 2018. 76 s. (in Russian).
- Çetinkaya M.B., İşci M. ANSYS based analysis of multi-level parabolic leaf spring systems. Alexandria Engineering Journal. 2023. V. 73. P. 109–121. DOI: 10.1016/j.aej.2023.04.043.
- Coelho C., Machado Jr G., Cabral J., Rocha L. MEMS resonators with electrostatic actuation and piezoresistive readout for sensing applications. Micro and Nano Engineering. 2022. V. 16. P. 1–10. DOI: 10.1016/j.mne.2022.100158.
- Dean J., Campbell J., Aldrich-Smith G., Clyne T.W. A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data. Acta Materialia. 2014. V. 80. P. 56–66. DOI: 10.1016/j.actamat.2014.07.054.
- Degroot A., MacDonald R., Richoux O., Gazengel B., Campbell M. Suitability of laser Doppler velocimetry for the calibration of pressure microphones. Applied Acoustics. 2008. V. 69. P. 1308–1317. DOI: 10.1016/j.apacoust.2007.09.003.
- Del Priore E, Lampani L. A methodology for applying isogeometric inverse finite element method to the shape sensing of stiffened thin-shell structures. Thin–Walled Structures. 2024. V. 199. P. 1–13. DOI: 10.1016/j.tws.2024.111837.
- Du J., Whittle A.J., Hu L., Divoux,T., Meegoda J.N. Characterization of meso-scale mechanical properties of Longmaxi shale using grid microindentation experiments. Journal of Rock Mechanics and Geotechnical Engineering. 2021. V. 13. P. 555–567. DOI:10.1016/j.jrmge.2020.09.009.
- Dubrov M.N. Laser Feedback and New Principle of Heterodyne Interferometry. Proc. of the 8-th IEEE International Conference on Laser and Fiber-Optical Networks Modeling. 2006. P. 92–95. DOI: 10.1109/LFNM.2006.251989.
- Gao T., Liao Q., Si W., Chu Y., Dong H., Li Y., Liao Y., Qin L. From fundamentals to future challenges for flexible piezoelectric actuators. Cell Reports Physical Science. 2024. V. 5. P. 1–30. DOI: 10.1016/j.xcrp.2024.101789.
- Gonzalez-Velazquez J.L. Chapter 5 – Fracture resistance of engineering materials. González-Velázquez, Jorge Luis. A Practical Approach to Fracture Mechanics. Elsevier. 2021. P. 145–176. DOI: 10.1016/B978-0-12-823020-6.00005-0.
- Plastiny monokristallicheskogo kremniya. URL: https://www.protehnology.ru/plastiny-monokristallicheskogo-kremniya (data obrashcheniya: 06.04.2024) (in Russian).
- Ji G., Huber J. Planar piezoelectric metamaterials: Sound transmission and applicable frequency range in oblique incidence. International Journal of Solids and Structures. 2024. V. 289. P. 1–19. DOI: 10.1016/j.ijsolstr.2023.112640.
- Karabutov A.A., Podymova N.B. Study on the subsurface damage depth in machined silicon wafers by the laser-ultrasonic method. Case Studies in Nondestructive Testing and Evaluation. 2014. V. 1. P. 7–12. DOI: 10.1016/j.csndt.2014.03.002.
- Li Z., Deng L., Kinloch I. A., Young R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Progress in Materials Science. 2023. V. 135. P. 1–58. DOI: 10.1016/j.pmatsci.2023.101089.
- Liang X., Qian X., Li W., Wang W., Liu Z. Absolute distance measurement without dead zone based on dual-channel dispersive interferometry using the femtosecond laser. Optics and Lasers in Engineering. 2025. V. 184. DOI: 10.1016/j.optlaseng.2024.108603.
- Marola S., Bosia S., Veltro A., Fiore G., Manfredi D., Lombardi M., Amato G., Baricco M., Battezzati L. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis. Materials and Design. 2021. V. 202. P. 1–12. DOI: 10.1016/j.matdes.2021.109550.
- Mikhaltsevitch V., Lebedev M., Pevzner R., Yurikov A., Tertyshnikov K. Low-frequency laboratory measurements of the elastic properties of solids using a distributed acoustic sensing system. Journal of Rock Mechanics and Geotechnical Engineering. 2023. V. 15. P. 2330–2338. DOI: 10.1016/j.jrmge.2023.05.002.
- Nozato H., Shimoda T., Kokuyama W. Dependence of frequency response on different velocity sensitivities of laser Doppler vibrometer. Measurement: Sensors. 2021. V. 18. P. 1–4. DOI: 10.1016/j.measen.2021.100301.
- Onyeagba C.R., Valashani M., Wang H., Brown C., Yarlagadda P., Tesfamichael T. Nanomechanical surface properties of co-sputtered thin film polymorphic metallic glasses based on Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cu. Surfaces and Interfaces. 2023. V. 40. P. 1–12. DOI: 10.1016/j.surfin.2023.103090.
- Podulka P., Macek W., Rozumek D., Zak K., Branco R. Topography measurement methods evaluation for entire bending-fatigued fracture surfaces of specimens obtained by explosive welding. Measurement. 2024. V. 224. P. 1–22. DOI: 10.1016/j.measurement.2023.113853.
- Qi Y., Hu D., Zheng M., Jiang Y., Chen Y. P. Deep learning assisted Raman spectroscopy for rapid identification of 2D materials. Applied Materials Today. 2024. V. 41. DOI: 10.1016/j.apmt.2024.102499.
- SenGupta G. Chapter 8 – Combination of the Finite Element Method (FEM) and the Periodic Structure (PS) theory. Gautam SenGupta. Vibration of Periodic Structures. Elsevier. 2024. P. 107–128. DOI: 10.1016/B978-0-32-399022-6.00014-X.
- Signore M.A., Francioso L., De Pascali C., Serra A., Mann D., Rescio G., Quaranta F., Melissano E., Velardi L. Improvement of the piezoelectric response of AlN thin films through the evaluation of the contact surface potential by piezoresponse force microscopy. Vacuum. 2023. V. 218. P. 1–10. DOI: 10.1016/j.vacuum.2023.112596.
- Taurino R., Bolelli G., Messi P., Iseppi R., Borgioli F., Galvanetto E., Caporali S. Investigation of chemical, physical and mechanical properties of hybrid chitosan-silica based coatings for aluminium substrate. Surface and Coatings Technology. 2024. V. 493. DOI: 10.1016/j.surfcoat.2024.131265.
- Vavro Jr., J., Vavro J., Kováčiková P., Bezdedová R. Kinematic and dynamic analysis of planar mechanisms by means of the SolidWorks software. Procedia Engineering. 2017. V. 177. P. 476–481. DOI: 10.1016/j.proeng.2017.02.248.
- Wei Z., Wu Y., Zhu S., Long W., Wang X., Cheng J., Hong S. Effects of plastic deformation ability and fluid medium on the cavitation erosion behavior of carbon nanotube reinforced cermet coatings. Tribology International. 2024. V. 196. DOI: 10.1016/j.triboint.2024.109655.
- Wolfer M., Giesen M., Heilig M., Seyfried V., Winter M. Characterization of the dynamics of encapsulated silicon MEMS devices using low-coherence heterodyne LDV technology. Micro and Nano Engineering. 2023. V. 19. P. 1–7. DOI: 10.1016/j.mne.2023.100191.
- Xue B., Brousseau E., Bowen C. Modelling of a shear-type piezoelectric actuator for AFM-based vibration-assisted nanomachining. International Journal of Mechanical Sciences. 2023. V. 243. P. 1–12. DOI: 10.1016/j.ijmecsci.2022.108048.
- Yang X. Chapter Eight – Finite element methods. Xin-She Yang, Engineering Simulation and its Applications. Academic Press. 2024. P. 99–115. DOI: 10.1016/B978-0-44-314084-6.00015-2.
- Zhang B., Bottenus N., Jin F.Q., Nightingale K.R. Quantifying the Impact of Imaging Through Body Walls on Shear Wave Elasticity Measurements. Ultrasound in Medicine & Biology. 2023. V. 49. P. 234–249. DOI: 10.1016/j.ultrasmedbio.2022.10.005.
- Zhao Y., Chen Y., Ye L. A non-contact inspection method of tile debonding using tuned acoustic wave and laser doppler vibrometer. Journal of Sound and Vibration. 2023. V. 564. DOI: 10.1016/j.jsv.2023.117875.

