A.G. Gudkov1, G.P. Nikolsky2, N.V. Fedorkova3, N.A. Shumakova4, I.A. Sidorov5, V.D. Shashurin6, V.Yu. Leushin7, S.V. Chizhikov8
1–3,5,6,8 Bauman Moscow State Technical University (Moscow, Russia)
4 North-Western State Medical University n. a. I.I. Mechnikov (Saint Petersburg, Russia)
7 OOO NPI FIRM HYPERION (Moscow, Russia)
1profgudkov@gmail.com, 2gnp2002@mail.ru, 3nvf-family@mail.ru, 4natashashumakova87@gmail.com, 5igorasidorov@yandex.ru, 6schashurin@bmstu.ru, 7ra3bu@yandex.ru, 8chigikov95@mail.ru
The rapid development of technologies in the field of noninvasive analysis leads to the replacement of traditional invasive diagnostic methods in medicine, which requires manufacturers of medical equipment to adapt to this trend. The emergence of non-invasive techniques can significantly affect established invasive diagnostic procedures, such as quantification of blood parameters.
Goal: to analyze the existing technologies and techniques of noninvasive diagnostics. To consider methods of noninvasive blood screening using the example of a study of hemoglobin levels in human blood. To present the implemented devices.
The analysis of existing methods of noninvasive diagnostics with an emphasis on quantitative determination of hemoglobin levels is presented. Models of noninvasive hemoglobinometers and the physical principles of their operation are presented.
The obtained results of the work can be used to improve the devices being developed or upgraded for the determination of hemoglobin in the blood.
Gudkov A.G., Nikolsky G.P., Fedorkova N.V., Shumakova N.A., Sidorov I.A., Shashurin V.D., Leushin V.Yu., Chizhikov S.V. Noninvasive diagnostics, methods and modern hemoglobinometers. Nanotechnology: development and applications – XXI century. 2025. V. 17. № 1. P. 5–15. DOI: https://doi.org/10.18127/ j22250980-202501-01 (in Russian)
- Sorokovikova T.V., Morozov A.M., Zhukov S.V., Ryzhova T.S., Morozova A.D., Horak K.I., Belyak M.A. Rol' neinvazivnyh metodov issledovaniya v sovremennoj klinicheskoj praktike. Sovremennye problemy nauki i obrazovaniya. 2022. № 2 (in Russian).
- Danatarova M.K. Sovremennoe medicinskoe oborudovanie. Nauka i mirovozrenie. 2024. № 20 (in Russian).
- Keall P.J. et al. Integrated MRI-guided radiotherapy – opportunities and challenges. Nat. Rev. Clin. Oncol. Nature Publishing Group. 2022. V. 19. № 7. P. 458–470.
- Mlosek R.K., Migda B., Migda M. High-frequency ultrasound in the 21st century. J. Ultrason. 2021. V. 20. № 83. P. e233–e241.
- Suhov V.Yu., Pospelov V.A. Metodiki radionuklidnoj diagnostiki. Luchevaya diagnostika i terapiya. 2016 (in Russian).
- Ansheles A.A., Sergienko I.V., Sergienko V.B. Sovremennoe sostoyanie i perspektivnye tekhnologii radionuklidnoj diagnostiki v kardiologii. Kardiologiya. 2018. T. 58. № 6. S. 61–69 (in Russian).
- Ryzhkov A.D. i dr. Primenenie gibridnyh radionuklidnyh tekhnologij vizualizacii i radionuklidnoj terapii u bol'nyh s osteogennoj sarkomoj. Onkologicheskij zhurnal: luchevaya diagnostika, luchevaya terapiya. 2024. T. 7. № 1. S. 19–29 (in Russian).
- Morozov A.M. et al. Medical thermography: capabilities and perspectives. Kazan Med. J. 2018. V. 99. № 2. P. 264–270.
- Anderson R.R., Parrish J.A. The Optics of Human Skin. J. Invest. Dermatol. 1981. V. 77. № 1. P. 13–19.
- Meng X. et al. Non-invasive optical methods for melanoma diagnosis. Photodiagnosis Photodyn. Ther. 2021. V. 34. P. 102266.
- Andreeva I.V., Vinogradov A.A. Perspektivy ispol'zovaniya sovremennyh metodov vizualizacii v morfologicheskih i eksperimental'nyh issledovaniyah. Nauka Molodyh. 2015. № 4. C. 56–69 (in Russian).
- Oslopov V.N., Kushcheva A.V., Hajrullin A.R. i dr. Elektrokardiografiya vysokogo razresheniya v klinicheskoj praktike. Vestnik sovremennoj klinicheskoj mediciny. 2023. T. 16. № 6. S. 110–122 (in Russian).
- Repina E.S., Kostelej Ya.V., Bureev A.Sh., Yur'ev S.Yu., Petrov I.A., Tihonovskaya O.A., Miheenko G.A. Monitorirovanie vnutriutrobnogo sostoyaniya ploda. Istoriya voprosa. Novye vozmozhnosti fonokardiografii. Byulleten' sibirskoj mediciny. 2023. № 22(3). S. 141–149. https://doi.org/10.20538/16820363-2023-3-141-149 (in Russian).
- Fajzrahmanov R.A., Mekhonoshin A.S. Metody diagnostiki serdechno-sosudistyh zabolevanij s ispol'zovaniem pul'sovyh signalov. Vestnik PNIPU Elektrotekhnika, informacionnye tekhnologii, sistemy upravleniya. 2014. № 10. S. 79–88 (in Russian).
- Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sens. Actuators Phys. Elsevier, 2021. V. 318. P. 112506.
- Reddy K.A., George B., Kumar J.V. Use of Fourier Series Analysis for Motion Artifact Reduction and Data Compression of Photoplethysmographic Signals. IEEE Transactions on Instrumentation and Measurement. 2009. V. 58. № 5. P. 1706–1711.
- Samatov D.S., Mochula A.V. Metody mashinnogo obucheniya v radiomike dlya analiza kardiovaskulyarnyh izobrazhenij. Perspektivy razvitiya fundamental'nyh nauk. 2023. T. 3. S. 25–27 (in Russian).
- Kataev M. Yu., Karamushka V.S. Obzor metodov obrabotki izobrazhenij MRT tomografii. Aktual'nye voprosy obshchestva, nauki i obrazovaniya: sbornik statej XVI Mezhdunar.nauch.-prakt. konf. Penza. 2024. S. 14–16 (in Russian).
- Dedkov A.E., Andrikov D.A., Hramov A.E. Obzor sposobov izmereniya kognitivnoj nagruzki mozga i metodov mashinnogo obucheniya dlya ih identifikacii na osnove dannyh EEG. Vrach i informacionnye tekhnologii. 2024. № 3. C. 20–31 (in Russian).
- Jianming Zhu et al. A Non-Invasive Hemoglobin Detection Device Based on Multispectral Photoplethysmography. Biosensors. Multidisciplinary Digital Publishing Institute. 2024. V. 14. № 1. P. 22.
- Tamura T. et al. Wearable Photoplethysmographic Sensors–Past and Present. Electronics. Multidisciplinary Digital Publishing Institute. 2014. V. 3. № 2. P. 282–302.
- Zhulev E.N., Rostov A.V., Rostov A.A. Sravnitel'naya harakteristika lazernogo izlucheniya s dlinami voln 810 i 980 Nm v eksperimente (in vitro) i v klinike (in vivo). Fundamental'nye aspekty psihologicheskogo zdorov'ya. 2018. № 3. S. 11–13 (in Russian).
- URL: https://heaclub.ru/anatomicheskoe-stroenie-ruki-cheloveka-s-nazvaniyami-nazvaniya-bazovyh-chastej-ruki-osobennosti-foto (data obrashcheniya: 09.01.2025).
- Kashchenko I.E. Adaptaciya sistemy vvoda cifrovyh predyskazhenij s pomoshch'yu modificirovannogo rekursivnogo metoda naimen'shih kvadratov. Tekhnika radiosvyazi. 2020. № 1(44). C. 76–85 (in Russian).
- Zumbahlen H. Linear Circuit Design Handbook. Newnes. 2011.
- Schafer R.W. What Is a Savitzky-Golay Filter? IEEE Signal Process. Mag. 2011. V. 28. № 4. P. 111–117.
- Lee C.M., Zhang Y.T. Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach. IEEE EMBS Asian-Pacific Conference on Biomedical Engineering. 2003. P. 194–195.
- Teng X.F., Zhang Y.T. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2003. V. 4. P. 3153–3156.
- Wu B.-F. et al. Camera-based Heart Rate measurement using continuous wavelet transform. International Conference on System Science and Engineering (ICSSE). 2017. P. 7–11.
- Bousefsaf F., Maaoui C., Pruski A. Continuous wavelet filtering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate. Biomed. Signal Process. Control. 2013. V. 8. № 6. P. 568–574.
- Dehkordi P. et al. Extracting Instantaneous Respiratory Rate From Multiple Photoplethysmogram Respiratory-Induced Variations. Front. Physiol. Frontiers. 2018. V. 9.
- Hyvärinen A., Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000. V. 13. № 4. P. 411–430.
- Kim B.S., Yoo S.K. Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans. Biomed. Eng. 2006. V. 53. № 3. P. 566–568.
- Sahoo K.C. et al. Diagnostic Validation and Feasibility of a Non-invasive Haemoglobin Screening Device (EzeCheck) for “Anaemia Mukt Bharat” in India. Cureus. V. 16. № 1. P. e52877.
- Gudkov A.G., Lazarenko M.I., Leushin V.Yu., Chechetkin A.V. Tekhnologii transfuziologii. M.: Sajns-press. 2012. C. 156 (in Russian).
- Kupryashov A.A., Biryukova T.V. Vozmozhnosti primeneniya neinvazivnoj gemoglobinometrii dlya skrininga donorov. Gematologiya i transfuziologiya. 2019. T. 62. № 1. C. 41–46 (in Russian).
- Seekircher L. et al. HemoCue Hb-801 Provides More Accurate Hemoglobin Assessment in Blood Donors Than OrSense NBM-200. Transfus. Med. Rev. 2024. V. 38. № 2. P. 150826.
- Hiscock R. et al. Comparison of Massimo Pronto-7 and Hemocue Hb 201+ with Laboratory Haemoglobin Estimation: A Clinical Study. Anaesth. Intensive Care. 2014. V. 42. № 5. P. 608–613.
- Shamah Levy T. et al. Validation of Masimo Pronto 7 and HemoCue 201 for hemoglobin determination in children from 1 to 5 years of age. PLOS ONE. Ed. Lam W. 2017. V. 12. № 2. P. e0170990.
- Skelton V.A. et al. Evaluation of point‐of‐care haemoglobin measuring devices: a comparison of Radical‐7TM pulse co‐oximetry, HemoCue® and laboratory haemoglobin measurements in obstetric patients. Anaesthesia. 2013. V. 68. № 1. P. 40–45.

