350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2024 г.
Article in number:
Identification of water bodies based on processing of multispectral satellite images
Type of article: scientific article
DOI: 10.18127/j22250980-202404-03
UDC: 528: 873
Authors:

A.G. Gudkov1, A.S. Tertychnya2, I.A. Sidorov3, S.V. Agasiev4, A.V. Khoperskov5

1,3 Bauman Moscow State Technical University (Moscow, Russia)
1 OOO NPI FIRM HYPERION (Moscow, Russia)
2,5 Volgograd State University (Volgograd, Russia)
4 FSAI HE “Peoples' Friendship University of Russia n. a. Patrice Lumumba” (Moscow, Russia)
1 profgudkov@gmail.com, 2 anna.kuzmich@volsu.ru, 3 igorasidorov@yandex.ru, 4 agasieva-sv@rudn.ru, 5 khoperskov@volsu.ru

Abstract:

The accuracy of mathematical modeling of the hydrological regime for a specific territory is determined by the quality of the digital elevation model (DEM) of this area. A particular challenge is the modeling of floodplain areas with a large number of reservoirs with changing water levels during flood periods. A distinctive feature of such a territory is the complex structure of small channels, vegetation and wetlands. Small changes in topographic elevations can significantly change flood patterns, requiring the construction of a high-precision DEM.

Objective – the goal is the analysis of the quality of a digital terrain model based on constructing a system of changing coastlines, processing multispectral satellite images of the area at different time.

The software for processing multi-channel satellite images with identification of water bodies in batch mode with subsequent vectorization of coastlines has been created. The possibility of updating altitude data using a set of boundaries of reservoirs using infrared data from the Landsat 7 ETM+ and Landsat 8-9 OLI satellites is shown. The critical values of intensities in the infrared channels have been determined, providing the best identification of the boundaries of reservoirs.

The construction of geographically referenced boundaries of water bodies can be used to solve various environmental, hydrological and socio-economic problems. In particular, it is proposed to update elevation data for periodically flooded floodplain areas.

Pages: 21-31
For citation

Gudkov A.G., Tertychnya A.S., Sidorov I.A., Agasiev S.V., Khoperskov A.V. Identification of water bodies based on processing of multispectral satellite images. Nanotechnology: development and applications – XXI century. 2024. V. 16. № 4. P. 21–31. DOI: https://doi.org/10.18127/ j22250980-202404-03 (in Russian)

References
  1. Zejliger A.M., Muzalevskij K.V., Zinchenko E.V., Ermolaeva O.S., Melihov V.V. Polevoe testirovanie metoda kartograficheskogo modelirovaniya vlagozapasov poverhnostnogo sloya pochvennogo pokrova, osnovannogo na dannyh radarnoj s"emki Sentinel-1 i cifrovoj modeli rel'efa. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2020. T. 17. № 4. S. 11–128 (in Russian).
  2. Shinkarenko S.S., Tkachenko N.A., Yuferev V.G. Geoinformacionnyj analiz hozyajstvennogo osvoeniya bassejna reki Don. Vestnik Moskovskogo universiteta. Seriya 5: Geografiya. 2022. № 3. S. 73–86 (in Russian).
  3. Sidorov I.A., Gudkov G.A., Novichihin E.P., Chizhikov S.V. Radiometricheskij metod izmereniya temperatury i vlazhnosti pochvy. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2024. № 1. S. 50–60 (in Russian).
  4. Butuhanov V.P., Atutov E.B., Ochirov O.N. Radiolokacionnoe rasseyanie vetrovyh voln vblizi beregovoj zony ozera Bajkal. Radiotekhnika. 2023. T. 87. № 12. S. 56−63 (in Russian).
  5. Bannari A., Morin D., Bonn F., Huete A.R. A review of vegetation indices. Remote Sensing Reviews, 1995. V.13. № 1. P. 95–120.
  6. Tiengo R., Merino-De-Miguel S., Uchôa J., Gil A. A Land Cover Change Detection Approach to Assess the Effectiveness of Conservation Projects: A Study Case on the EU-Funded LIFE Projects in São Miguel Island, Azores (2002–2021). Land. 2024. V. 13. № 5. P. 666.
  7. Singh S. Mapping soil trace metal distribution using remote sensing and multivariate analysis. Environmental Monitoring and Assessment. 2024. V. 196. Article № 516.
  8. Gholizadeh A., Kopačková V. Detecting vegetation stress as a soil contamination proxy: A review of optical proximal and remote sensing techniques. International Journal of Environmental Science and Technology. 2019. V. 16. P. 2511–2524.
  9. Cho M.A., Debba P., Mutanga O., Dudeni-Tlhone N.,Magadla T., Khuluse S.A. Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health. International Journal of Applied Earth Observation and Geoinformation. 2012. V. 16. P. 85–93.
  10. Masaitis G., Mozgeris G., Augustaitis A. Spectral reflectance properties of healthy and stressed coniferous trees.iForest. 2013. V. 6. P. 30–36.
  11. Buitrago M.F., Groen T.A., Hecker C.A., Skidmore A.K. Identifying leaf traits that signal that signal stress in TIR spectra. ISPRS Journal of Photogrammetry and Remote Sensing. 2017. V. 125. P. 132–145.
  12. Forlingieri F., Biondi F., Fiscante N., Tarpanelli A., Addabbo P., Clemente C., Giunta G., Orlando D. Enhancements of River Water Level Monitoring Method Using COSMO-SkyMed SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2024. V. 215–1535. P. 1–10.
  13. Shekede M.D., Gondo T., Mavhenge M.M., Mazhindu A.N. Using Landsat satellite imagery to monitor the spatial and temporal dynamics of aquatic weed extent in Lakes Chivero and Manyame, located in an urban catchment of Zimbabwe. Water S.A. 2023. V. 49. № 1. P. 46–55.
  14. Naghdi M., Vafakhah M., Moosavi V. Improving Snowmelt Runoff Model (SRM) Performance Incorporating Remotely Sensed Data. Journal of the Indian Society of Remote Sensing. 2024. V. 52. P. 1841–1853.
  15. Tertychnaya A.S., Tertychnyj K.S., Hoperskov A.V. Metod opredeleniya beregovyh linij vodnyh ob"ektov na osnove obrabotki dannyh distancionnogo zondirovaniya Landsat ETM+. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2023. T. 20. № 5. S. 28–38 (in Russian).
  16. Tertychnaya A., Khoperskov A. Highlighting of Hydrographic Objects on Satellite Images for the Development of High-quality Digital Relief Models of Floodplain Areas as a Basis for Modeling the Hydrological Regime. IEEE Xplore: 2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency. SUMMA 2023. P. 757–762.
  17. Ihlen V., Zanter K. Landsat 7 Data Users Handbook. Department of the Interior U.S. Geological Survey. 2019.ver.2.0. P.151.
  18. Khrapov S.S., Khoperskov A.V. Application of Graphics Processing Units for Self-Consistent Modelling of Shallow Water Dynamics and Sediment Transport. Lobachevskii Journal of Mathematics. 2020. V.41.№ 8.P. 1475–1484.
  19. Isaeva I. I., Haritonov M. A., Vasil'chenko A. A., Voronin A.A., Hoperskov A.V., Klikunova A.Yu. Ustojchivoe razvitie pojmennyh territorij zaregulirovannyh rek. Ch. 2. Proektirovanie effektivnoj sistemy upravleniya strukturoj pojmennyh territorij. Problemy upravleniya. 2024. № 1. S. 57–78 (in Russian).
  20. Isaeva I.I., Voronin A.A. Modeli upravleniya gidrotekhnicheskimi proektami na pojmennyh territoriyah s uchetom aktivnosti ee hozyajstvuyushchih sub"ektov. Matematicheskaya fizika i komp'yuternoe modelirovanie. 2024. T. 27. № 1. S. 45–61 (in Russian).
  21. Tertychnaya A., Khoperskov A. Estimates of the accuracy and rate of convergence of short-term meteorological forecasts using the regional climate model RegCM4. E3S Web of Conferences. 2023. V. 460. 09015. 12 p.
  22. Klikunova A.Yu. Metod postroeniya kadastrovyh kart zatopleniya rechnyh dolin na os­nove gidrodinamicheskogo i geoinformacionnogo modelirovaniya. Matematicheskaya fizika i komp'yuternoe modelirovanie. 2023. T. 26. № 3. S. 15–23 (in Russian).
  23. Klikunova A.Yu., Khoperskov A.V., Agafonnikova E.O., Kuz’mich A.S., Dyakonova T.A., Khrapov S.S., Gusev I.M. Creation of cadastral maps of flooding based on numerical modeling. Journal of Computational and Engineering Mathematics. 2019. V. 6. № 2. P. 3–17.
Date of receipt: 21.10.2024
Approved after review: 01.11.2024
Accepted for publication: 27.11.2024