350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2024 г.
Article in number:
Methodology of synthesis of microwave radiometric receivers on heterostructure elements according to the reliability criterion in instrument engineering technology
Type of article: scientific article
DOI: 10.18127/j22250980-202404-01
UDC: 551.579.5
Authors:

N.A. Vetrova1, A.G. Gudkov2, E.V. Kuimov3, S.V. Chizhikov4

1–6 Bauman Moscow State Technical University (Moscow, Russia)
1 FSAI HE Peoples' Friendship University of Russia n. a. Patrice Lumumba (Moscow, Russia)
3 OOO NPI FIRM HYPERION (Moscow, Russia)
1 vetrova@bmstu.ru, 2 profgudkov@gmail.com, 3 ekjmo@mail.ru, 4 chigikov95@mail.ru

Abstract:

Methodologically, the problem of analyzing the parameters of the purpose of microwave radiometric receivers on heterostructure elements has been successfully solved and the effectiveness of approaches to assessing the probability of yield has been proven. However, the problem of synthesizing such receivers within the framework of complex design and technological optimization in the concept of four principles is still poorly formalized due to its complexity and the new heterostructure implementation of the element base of such microwave radiometric receivers. To ensure the required level of reliability of such devices, it is necessary to develop a practice-oriented technique for synthesizing their parameters, which will ensure the maximum level of reliability of the product at a minimum or limited cost.

The purpose of the study is to develop a methodological formalization of the solution to the problem of synthesizing microwave radiometric receivers on heterostructure elements according to the reliability criterion, taking into account the specifics of the monolithic integrated implementation of the circuits of such devices.

The result of the work done is a technique for synthesizing microwave radiometric receivers on heterostructure elements according to the reliability criterion based on four basic principles of complex design and technological optimization. The results of the study can be used in the development, production and operational support of microwave radiometric receivers on heterostructure elements by the manufacturer, which will increase production efficiency, reduce costs and improve product quality.

Pages: 5-15
References
  1. Agasieva S.V. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 1. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2012. 212 s. (in Russian).
  2. Agasieva S.V. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 2. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2013. 214 s. (in Russian).
  3. Agasieva S.V. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kniga 3. Pod red. V.N. V'yuginova, A.G. Gudkova i V.V. Popova. M.: OOO NTP «Virazh-Centr». 2016. 252 s. (in Russian).
  4. Gudkov A.G. i dr. Radiotermometriya: Monografiya. Pod red. A.G. Gudkova. M.: Radiotekhnika. 2023. 348 s. (in Russian).
  5. Vetrova N.A., Lemondzhava V.N., Filyaev A.A., Gorlacheva E.N., Luneva L.A. et al. Prediction of Safety Indicators for Donor Blood and Its Components in a Statistically Managed Technological Process Based on Bayesian Inversion. Biomedical Engineering. 2022. V. 56(2). P. 114–118.
  6. Vetrova N.A., Pchelincev K.P., Shashurin V.D., Gudkov A.G., Solov'ev Yu.V. Nejrosetevye metody dlya T CAD-sred modelirovaniya geterostrukturnyh nanoelektronnyh priborov s poperechnym tokoperenosom. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2021. T. 13. № 1. S. 5–11 (in Russian).
  7. Vetrova N.A., Pchelincev K.P., Shashurin V.D. Perseptronnaya set' prognozirovaniya elektricheskih harakteristik rezonansno-tunnel'nogo dioda. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2021. T. 13. № 4. S. 5–9 (in Russian).
  8. Shashurin V.D., Vetrova N.A., Meshkov S.A. Obespechenie nadezhnosti smesitelej radiosignalov na rezonansno-tunnel'nyh diodah na etape ih sborki. Sborka v mashinostroenii, priborostroenii. 2012. № 7. S. 40–45 (in Russian).
  9. Vetrova N., Kuimov E., Meshkov S., Sinyakin V., Shasurin V. et al. Architecture of Composite Multilayer Semiconductor Nanostructures. Lecture Notes in Networks and Systems. 2024. V. 733. P. 1087–1094.
  10. Vetrova N., Kuimov E., Sinyakin V., Makeev M., Shashurin V. et al. Bistability of AlGaAs/GaAs Resonant-Tunneling Diodes Heterostructural Channel. Sensors. 2023. V. 23(18). P. 7977.
  11. Vetrova N.A., Kuimov E.V., Meshkov S.A., Sinyakin V.Y., Shasurin V.D. et al. Architecture of composite multilayer semiconductor nanostructures. E3S Web of Conferences. 2023. V. 413. P. 02026.
  12. Vetrova N., Kuimov E., Meshkov S., Sinyakin V., Shashurin V. et al. A Compact Current-Transfer Model in Resonant-Tunneling Structures with Consideration of Interelectronic Interaction. Electronics (Switzerland, 2023. V. 12(3). P. 519.
  13. Kuimov E., Vetrova N., Meshkov S., Luneva L., Makeev M. et al. Interelectronic Scattering in a Model Taking into Account the Parasitic Resistance of a Heterostructure Resonant Tunnel Diode. Proceedings of the 2023 7th International Conference on Information, Control, and Communication Technologies. ICCT 2023. 2023.
  14. Kuimov E., Vetrova N., Meshkov S. Model of the Initial Section of RTD's CVC for RFID Tags. Proceedings – 2023 International Russian Smart Industry Conference, SmartIndustryCon 2023. 2023. P. 89–93.
  15. Gudkov A.G., Leushin V.Y., Agasieva S.V., Chizhikov S.V., Gudkov G.A. A thermostatic bath for transfusiology. Biomedical Engineering. 2024. V. 57(6). P. 371–373.
  16. Lemondzhava V.N., Gudkov A.G., Vetrova N.A., Shashurin V.D., Lemondzhava T.Yu. Model for Ensuring the Manufacturability of the Design of Devices for Heat Treatment of Biological Products. AIP Conference Proceedings. 2023. V. 2549(1). P. 170005.
  17. Gudkov A.G., Leushin V.Y., Agasieva S.V., Gudkov G.A., Porokhov I.O. et al. Device for Temperature Control and Mixing of Biological Samples. Biomedical Engineering. 2023. V. 57(1). P. 1–4.
  18. Shashurin V.D., Vetrova N.A., Pchelincev K.P., Kuimov E.V., Kozij A.A. Effektivnyj vychislitel'nyj algoritm rascheta elektricheskih harakteristik nanorazmernyh geterostruktur na osnove formalizma Landauera-Buttikera. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. № 1. S. 34–43 (in Russian).
  19. Shashurin V.D., Vetrova N.A., Pchelincev K.P., Kuimov E.V. Vybor celevoj funkcii dlya optimizacii radioelektronnyh izdelij na mnogoslojnyh nanorazmernyh AlGaAs-geterostrukturah i ustrojstv na ih osnove. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. T. 11. № 4. S. 39–44 (in Russian).
  20. Vetrova N.A., Filyaev A.A., Shashurin V.D. Modelirovanie prozrachnosti nizkorazmernogo kanala s kvantovym ogranicheniem v poluprovodnikovyh priborah na 2D-strukturah s poperechnym tokoperenosom. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 4. S. 54–62 (in Russian).
  21. Shashurin V.D., Kuimov E.V., Pchelincev K.P., Aleksandrov A.S. Topologicheski-orientirovannyj podhod k vyboru metoda modelirovaniya prozrachnosti geterostrukturnyh kanalov nanoelektronnyh priborov. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022. T. 14. № 1. S. 31–39 (in Russian).
Date of receipt: 15.10.2024
Approved after review: 30.10.2024
Accepted for publication: 27.11.2024