350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2024 г.
Article in number:
Research on aerosol particles formed by laser interaction with various metals
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202403-02
UDC: 620.11
Authors:

K.A. Shcherbakov1, A.V. Koroleva2, A.V. Razumnaya3, M.V. Chichkov4, M.I. Makhov5, M.D. Cheban6, V.V. Fedorova7

1–3, 5, 7 Peoples' Friendship University of Russia n. a. Patrice Lumumba (Moscow, Russia)
4 National University of Science and Technology MISIS (Moscow, Russia)
6 Prokhorov General Physics Institute of Russian Academy of Sciences (Moscow, Russia)
1 shcherbakov-ka@rudn.ru, 2 1032201522@rudn.ru, 3 1132223433@rudn.ru, 4 m.chichkov@misis.ru, 5 makhov-mi@rudn.ru, 6 chebanmd@kapella.gpi.ru

Abstract:

Laser technologies are widely used in modern industry for cutting, welding, surface cleaning, drilling, and more, including in the nuclear industry for processing radioactively contaminated structures. These processes often lead to the formation of aerosol particles, including toxic nanoparticles, primarily oxides, which can penetrate cellular membranes and accumulate in the body. Understanding these particle formation processes is crucial for improving gas purification systems and personal protective equipment.

This study utilized a ytterbium fiber pulsed-periodic laser (1.064 µm wavelength, 20 W power, 40 kHz pulse repetition rate, 200 ns pulse duration) to process various metals: aluminum (Al), bismuth (Bi), E110 alloy (Zr-based), carbon steel (St3), and stainless steel (08X18H10T). Aerosols were analyzed using a silicon monocrystalline substrate placed near the laser impact site, cleaned thoroughly to remove any contaminants.

A 3D-printed model held the substrate at a 15-degree angle in the laser processing zone. Experiments were conducted in a closed box with local exhaust, positioning the substrate to capture the finest aerosol particles. Samples were analyzed using scanning electron microscopy (SEM) on a JEOL JSM-6480LV microscope.

Results showed that aerosols formed consist of submicron agglomerates of particles smaller than 100 nm, with uneven deposition indicating air-borne agglomeration. Repeated scanning formed branched structures of interconnected nanoparticle agglomerates.

In conclusion, laser processing with a 1.064 µm ytterbium fiber laser produces submicron aerosols of nanoparticles, presumably oxides. The deposition pattern suggests air-borne agglomeration, independent of the target material. These findings underscore the need for enhanced air purification and protective equipment to mitigate nanoparticle accumulation risks in respiratory organs and on skin during laser equipment operation.

Pages: 13-20
For citation

Shcherbakov K.A., Koroleva A.V., Razumnaya A.V., Chichkov M.V., Makhov M.I., Cheban M.D., Fedorova V.V. Research on aerosol particles formed by laser interaction with various metals. Nanotechnology: development and applications – XXI century. 2024. V. 16.
№ 3. P. 13–20. DOI: https://doi.org/10.18127/ j22250980-202403-02 (in Russian)

References
  1. Grigor'yanc A.G., Shiganov I.N., Misyurov A.I. Tekhnologicheskie processy lazernoj obrabotki. 2006 (in Russian).
  2. Cheban M., Filatova S., Kravchenko Y., Scherbakov K., Mamonov D., Klimentov S., Savinov M., Chichkov M. Laser surface cleaning of simulated radioactive contaminants in various technological environments. Nuclear Engineering and Technology. 2024.
  3. Qian Wang, Feisen Wang, Chuang Cai, Hui Chen, Fei Ji, Chen Yong, Dasong Liao. Laser decontamination for radioactive contaminated metal surface: A review. Nuclear Engineering and Technology. 2023. V. 55. № 1. P. 12–24.
  4. Shcherbakov K.A., Shitova E.S., Peganov E.A., Kim S.D., Mihejkin S.M. Analiz sovremennogo sostoyaniya rabot po lazernoj dezaktivacii metallicheskih poverhnostej. Voprosy atomnoj nauki i tekhniki. Ser.: Materialovedenie i novye materialy. 2021. Vyp. 2(108). S. 14–25 (in Russian).
  5. Gosteva E.A., Belik K.D., Zubareva P.D. Osobennosti klassifikacii ostroj toksichnosti nanochastic serebra, dioksida titana i ugleroda. Vysokie tekhnologii i innovacii v nauke. 2022. S. 19–23 (in Russian).
  6. Zajceva N.V., Zemlyanova M.A. Issledovanie ostroj toksichnosti aerozolya nanodispersnogo oksida marganca dlya prognozirovaniya opasnosti zdorov'yu rabotayushchih i naseleniya pri ingalyacionnoj ekspozicii. Analiz riska zdorov'yu. 2018. № 1. S. 89–97 (in Russian).
  7. Vouitsis I., Portugal J., Kontses A., Karlsson H.L., Faria M., Elihn K., Juárez-Facio A.T., Amato F., Piña B., Samaras Z. Transport-related airborne nanoparticles: Sources, different aerosol modes, and their toxicity. Atmospheric Environment. 2023. V. 301. P. 119698.
  8. Bessa M.J., Brandão F., Rosário F., Luciana M., Reis A.T., Valdiglesias V., Laffon B., Fraga S., Teixeira J.P. Assessing the in vitro toxicity of airborne (nano) particles to the human respiratory system: from basic to advanced models. Journal of Toxicology and Environmental Health, Part B. 2023. Т. 26. № 2. С. 67–96.
  9. Costabile F., Gualtieri M., Rinaldi M., Canepari S., Vecchi R., Massimi L., Di Iulio G., Paglione M., Di Liberto L., Corsini E., Facchini M.C., Decesari S. Exposure to urban nanoparticles at low PM 1 concentrations as a source of oxidative stress and inflammation. Scientific Reports. 2023. V. 13. № 1. P. 18616.
  10. Lesniak A., Salvati A., Santos-Martinez M.J., Radomski M.W., Dawson K.A., Åberg Ch. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. Journal of the American Chemical Society. 2013. V. 135. № 4. P. 1438–1444.
  11. Chen J., Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: a systematic review and meta-analysis. Environment international. 2020. V. 143. P. 105974.
Date of receipt: 07.06.2024
Approved after review: 21.06.2024
Accepted for publication: 29.08.2024