D.I. Yaminsky1, S.M.Panova2, I.V. Yaminsky3
1–3 Lomonosov Moscow State University (Moscow, Russia)
2,3 Advanced Technologies Center (Moscow, Russia)
1 y@sinno.ru, 2 serafima.panova@student.physchem.msu.ru, 3 yaminsky@nanoscopy.ru
Modern scanning probe microscopes using piezoceramic stage for scanning are becoming increasingly important metrological equipment. However, this piezoceramic stage has their shortcomings such as creep, non-linearity and hysteresis. To eliminate movement errors it is necessary to additionally calibrate the microscope using various measures.
Goals: Develop the method to ensure the accuracy of calibration of a scanning probe microscope, taking into account the piezoceramics non-linearity, creep and hysteresis, using static and dynamic measures: calibration lattices and the nanometre standard.
The analysis of piezoceramic stages during scanning was carried out. Considered two measures different principle of operation – static and dynamic. Calibration methods for each measure are given. The possibilities for the application of measures are demonstrated using FemtoScan multifunctional scanning probe microscope.
Proposed calibration measures and methods help to improve the metrological standard of scanning probe microscopes in a wide range of movements, what allows for more accurate measurements and images of nanometre-scale objects.
Yaminsky D.I., Panova S.M., Yaminsky I.V. Calibration of scanning probe microscopes: static and dynamic measures. Nanotechnology: development and applications – XXI century. 2024. V. 16. № 2. P. 54–71. DOI: https://doi.org/10.18127/ j22250980-202402-06 (in Russian)
- MEMS Materials and Processes Handbook. Ed.: Reza Ghodssi, Pinyen Lin. New York: Springer. 2011. P. 403–456.
- Odinokov S.B., Sagatelyan G.R., Kovalev M.S. Raschet, konstruirovanie i izgotovlenie difrakcionnyh i gologrammnyh opticheskih elementov. M.: Izd-vo MGTU im. N.E. Baumana. 2014. 121 s. (in Russian).
- Mogab C.J., Adams A.C., Flamm D.L. Plasma etching of Si and SiO2 – The effect of oxygen additions to CF4 plasmas. Journal of Applied Physics. July 1978. № 49(7). P. 3796–3803.
- d’Agostino R., Cramarossa F., De Benedictis S., Ferraro G. Spectroscopic diagnostics of CF4 – O2 plasmas during Si and SiO2 etching processes. Journal of Applied Physics. March 1981. № 52 (3). P. 1259–1265.
- Knizikevichus R. Simulation of Si and SiO2 Etching in SiF6 + O2 Plasma. Acta Physica Polonica A. 2010. V. 117. № 3. P. 478–483.
- d’Agostino R., Flamm D.L. Plasma etching of Si in SF6 – O2 mixtures. Journal of Applied Physics. January 1981. № 52(1). P. 162–167.
- Stillahn J.M., Zhang J., Fisher E.R. Surface interactions of SO2 and passivation chemistry during etching of Si and SiO2 in SF6/O2 plasmas. J. Vac. Sci. Technol. Jan/Feb 2011. № A 29(1). P. 011014-1 – 011014-10.
- Kim D.H., Choi J.E., Hong S.J. Analysis of optical emission spectroscopy data during silicon etching in SF6/O2/Ar plasma. Plasma Sci. Technol. 2021. № 23. 125501. – 11 p. https://doi.org/10.1088/2058-6272/ac24f4.
- Flamm D.L., Mogab C.J., Sklaver E.R. Reaction of fluorine atoms with SiO2. Journal of Applied Physics. October 1979. № 50(10).
P. 6211–6213. - Odinokov S.B., Sagatelyan G.R., Drozdova E.A., Betin A.Yu. Zhidkostnoe travlenie kremniya pri izgotovlenii gologrammnyh opticheskih elementov. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2018. T. 10. № 2. S. 38–51 (in Russian).
- Odinokov S.B., Sagatelyan G.R. Tekhnologiya izgotovleniya difrakcionnyh i gologrammnyh opticheskih elementov s funkcional'nym mikrorel'efom poverhnosti metodom plazmohimicheskogo travleniya. Vestnik MGTU im. N.E. Baumana. Ser.: Priborostroenie. 2010. № 2 (79). S. 92–104 (in Russian).
- Odinokov S.B., Sagatelyan H.R. The design and manufacturing of diffraction optical elements to form a dot-composed etalon image within the optical systems. Optics and Photonics Journal. 2013. V. 3 № 1. P. 102–11 (in Russian).
- Odinokov S.B., Sagatelyan G.R., Kovalev M.S., Solomashenko A.B., Drozdova E.A. Sozdanie DOE dlya formirovaniya tochechnyh etalonnyh izobrazhenij v opticheskih sistemah. Komp'yuternaya optika. 2013. T. 37. № 3. S. 341–351 (in Russian).
- Berlin E.V., Dvinin S.A., Sejdman L.A. Vakuumnaya tekhnologiya i oborudovanie dlya naneseniya i travleniya tonkih plenok. M.: Tekhnosfera. 2007. 176 s. (in Russian).
- Odinokov S.B., Ruchkina M.A., Sagatelyan G.R., Solomashenko A.B., Zherdev A.Y. Design and experiments of combined diffractive optical element for virtual displays and indicators. In: Proceedings of SPIE – The International Society for Optical Engineering. 4, Advances and Modern Trends. 2015. P. 95080R.
- Podlipnov V.V., Kolpakov V.A., Kazanckij N.L. Issledovanie travleniya dioksida kremniya vo vneelektrodnoj plazme s ispol'zovaniem hromovoj maski. Komp'yuternaya optika. 2016. T 40. № 6. S. 830–836 (in Russian).
- Volkov A.V., Moiseev O.Yu., Poletaev S.D., Chistyakov I.V. Primenenie tonkih plenok molibdena dlya kontaktnyh masok pri izgotovlenii mikrorel'efov elementov difrakcionnoj optiki. Komp'yuternaya optika. 2014. T. 38. № 4. S. 757–761 (in Russian).
- Protasov D.Yu., Vicina N.R., Valisheva N.A., Dul'cev F.N., Malin T.V., Zhuravlev K.S. Ispol'zovanie maski iz hroma dlya plazmohimicheskogo travleniya sloev AlxGa1−xN. Zhurnal tekhnicheskoj fiziki. 2014. T. 84. № 9. S. 96–99 (in Russian).
- Volkov A.V., Volodkin B.O., Dmitriev S.V., Eropolov V.A., Moiseev O.Yu., Pavel'ev V.S. Tonkoplenochnaya med' kak maskiruyushchij sloj v processe plazmohimicheskogo travleniya kvarca. Komp'yuternaya optika. 2007. T. 31. № 4. S. 52–54 (in Russian).
- Feldsien J., Doosik K., Economou D.J. SiO2 etching in inductively coupled C2F6 plasmas: surface chemistry and two-dimensional simulations. Thin Solid Films. 2000. V. 374. P. 311–325.
- Vetrova E.V., Smirnov I.P., Kozlov D.V., Zapetlyaev V.M. Osobennosti sozdaniya chuvstvitel'nyh elementov kremnievyh i kvarcevyh mayatnikovyh akselerometrov. Raketno-kosmicheskie i informacionnye sistemy. 2017. T. 4. Vyp. 2. S. 95–102 (in Russian).
- Issledovanie kinematiki novogo stanka dlya dvuhstoronnego polirovaniya opticheskih ploskoparallel'nyh plastin. Nanotekhnologii: razrabotka. Primenenie – XXI vek. 2022. T. 14. № 3. S. 47–55 (in Russian).
- Shishlov A.V., Sagatelyan G.R. Metodika rascheta tolshchin pokrytiya v razlichnyh tochkah poverhnosti zagotovki pri napylenii na magnetronnyh ustanovkah s planetarnym mekhanizmom. Pribory. 2015. № 3. S. 37–45 (in Russian).
- Bugorkov K.N., Sagatelyan G.R. Vozmozhnosti plazmohimicheskogo travleniya stekla po diodnoj skheme. Mashinostroenie i komp'yuternye tekhnologii. 2017. № 11. S. 44–63 (in Russian).
- Sagatelyan G.R., Cheremisin A.V. Raschet elektromagnitnogo polya ploskogo induktora ustanovki plazmohimicheskogo travleniya. Innovacionnye tekhnologii v elektronike i priborostroenii. M.: MIREA. 2020. S. 33–37 (in Russian).
- Sagatelyan G.R., Grachev I.Yu., Bugorkov K.N., Fedorkova N.V. Raschet elektromagnitnogo polya ploskogo induktora ustanovki plazmohimicheskogo travleniya. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 1. S. 29–42 (in Russian).
- Grachev I.Yu., Sagatelyan G.R., Bugorkov K.N. Analiz raspredeleniya aktivnogo gaza v reaktore pri plazmohimicheskom travlenii. Estestvennye i tekhnicheskie nauki. 2018. № 4 (118). S. 206–207 (in Russian).
- Sagatelyan G.R., Bugorkov K.N., Mal'kov I.A. Issledovanie vliyaniya raspolozheniya detali v vakuumnoj kamere na harakteristiki plazmohimicheskogo trvleniya. Innovacionnye tekhnologii v elektronike i priborostroenii. M.: MIREA. 2021. S. 41–47 (in Russian).
- Sagatelyan G.R., Bugorkov K.N., Solomashenko A.B., Kuznecov A.S. Plazmohimicheskoe travlenie kvarcevogo stekla geksaftordom sery. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 3. S. 32–46 (in Russian).
- Bugorkov K.N., Sagatelyan G.R. Plazmohimicheskoe travlenie stekla s primeneniem vysokochastotnoj diodnoj skhemy. Estestvennye i tekhnicheskie nauki. 2017. № 8 (110). S. 87–91 (in Russian).
- MEMS Materials and Processes Handbook. Ed. Reza Ghodssi, Pinyen Lin. New York: Springer. 2011. P. 407–457.
- Liberman M.A., Lichtenberg A.J. Principles of plasma discharges and material processing. Hoboken, New Jersey.: John Wiley & Sons, Inc. 2005. P. 461–491.
- Chabret P., Braithwaite N. Physics of radio-frequency plasmas. New York.: Cambridge University Press. 2011. P. 219–260.
- Gájnov R.R., Dulov E.N., Bikchantaev M.M. Effekt Komptona: Uchebno-metodicheskoe posobie. Kazan': Kazanskij (Privolzhskij) federal'nyj universitet. 2013. 24 s. (in Russian).
- Semiohin I.A. Elementarnye processy v nizkotemperaturnoj plazme: Ucheb. posobie. M.: Izd-vo Mosk. un-ta. 1988. S. 4–7 (in Russian).
- Demesh Sh.Sh., Zavilopulo A.N., Shpenik O.B., Remeta E.Yu. Energii poyavleniya fragmentov pri dissociativnoj ionizacii molekuly geksaftorida sery elektronnym udarom. Zhurnal tekhnicheskoj fiziki. 2015. T. 85. Vyp. 6. S. 44–51 (in Russian).
- Vasil'ev A.A., Vinogradov A.I., Zaryankin N.M., Putrya M.G., Timoshenkov S.P. Issledovanie harakteristik plazmohimicheskogo reaktora s ploskim induktorom. Izv. vuzov. Ser.: Elektronika. 2009. № 3(77). S. 7–11 (in Russian).
- Yanin S.N. Lekcii po osnovam fiziki plazmy. Ch. I. Tomskij politekhnicheskij universitet. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta. 2012. 78 s. (in Russian)
- Golant V.E., Zhilinskij A.P., Saharov I.E. Osnovy fiziki plazmy. M.: Atomizdat. 1977. S. 19. (in Russian).
- Ilyasov V.V., Zhdanova T.P. Fizicheskie osnovy generacii plazmy: Ucheb. posobie. Rostov-na-Donu: Donskoj gosudarstvennyj tekhnicheskij universitet. 2013. S. 17–21 (in Russian).
- Tashlykova-Bushkevich I.I. Fizika: ucheb. posobie. V 2 ch. Ch. 2: Optika. Kvantovaya fizika. Stroenie i fizicheskie svojstva veshchestva. Minsk: BGUIR. 2008. S. 104–107 (in Russian).
- NIST-JANF Thermochemical Tables. Fourth Edition. Malcolm W. Chase, Jr. Ed. Journal of Physical and Chemical Reference Data. Monograph No. 9. January 1998. P. 175–1879.