350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2024 г.
Article in number:
Calibration of scanning probe microscopes: static and dynamic measures
Type of article: overview article
DOI: https://doi.org/10.18127/j22250980-202402-05
UDC: 53.085.332
Authors:

D.I. Yaminsky1, S.M.Panova2, I.V. Yaminsky3

1–3 Lomonosov Moscow State University (Moscow, Russia)
2,3 Advanced Technologies Center (Moscow, Russia)
1 y@sinno.ru, 2 serafima.panova@student.physchem.msu.ru, 3 yaminsky@nanoscopy.ru

Abstract:

Modern scanning probe microscopes using piezoceramic stage for scanning are becoming increasingly important metrological equipment. However, this piezoceramic stage has their shortcomings such as creep, non-linearity and hysteresis. To eliminate movement errors it is necessary to additionally calibrate the microscope using various measures.

Goals: Develop the method to ensure the accuracy of calibration of a scanning probe microscope, taking into account the piezoceramics non-linearity, creep and hysteresis, using static and dynamic measures: calibration lattices and the nanometre standard.

The analysis of piezoceramic stages during scanning was carried out. Considered two measures different principle of operation – static and dynamic. Calibration methods for each measure are given. The possibilities for the application of measures are demonstrated using FemtoScan multifunctional scanning probe microscope.

Proposed calibration measures and methods help to improve the metrological standard of scanning probe microscopes in a wide range of movements, what allows for more accurate measurements and images of nanometre-scale objects.

Pages: 48-53
For citation

Yaminsky D.I., Panova S.M., Yaminsky I.V. Calibration of scanning probe microscopes: static and dynamic measures. Nanotechnology: development and applications – XXI century. 2024. V. 16. № 2. P. 48–53. DOI: https://doi.org/10.18127/ j22250980-202402-05 (in Russian)

References
  1. Lippmann G. Principe de la conservation de l'électricité [Principle of the conservation of electricity]. Annales de chimie et de physique. 1881. V. 24. P. 145.
  2. Curie Ja., Curie P. Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclinées [Contractions and expansions produced by voltages in hemihedral crystals with inclined faces]. Comptes Rendus (in French). 1881. V. 93. P. 1137–1140.
  3. Certificate of type approval of measuring instruments RU.C.27.004.A №42471
  4. https://rusneb.ru/catalog/000224_000128_0002626194_20170724_C1_RU/
  5. Golubev S., Zahar'in V., Meshkov G., Tokunov Yu., YAminskij D., YAminskij I. Kalibrovka zondovyh mikroskopov. Dinamicheskaya mera «nanometr». Nanoindustriya. 2012. № 38(8). S. 42–46 (in Russian).
  6. Ahmetova A.I., YAminskij I.V., Sinicyna O.V., Meshkov G.B. Metrologicheskoe obespechenie v bionanoskopii. Nanoindustriya. 2016. № 66(4). S. 36–39 (in Russian).
  7. Patent na izobretenie (RF) № 2538029. Kalibrovochnyj etalon dlya profilometrov i skaniruyushchih zondovyh mikroskopov. 2014 (in Russian).
Date of receipt: 24.01.2024
Approved after review: 07.02.2024
Accepted for publication: 04.03.2024