V.M. Gareev1, M.V. Gareev2, M.A. Kalitov3, N.P. Kornishev4, D.A. Serebryakov5, N.I. Lebedinsky6
1,2 4–6 Yaroslav-the-Wise Novgorod State University (Veliky Novgorod, Russia)
3 JSC “ELSI” (Veliky Novgorod, Russia)
1 Vladimir.Gareev@novsu.ru, 2 Mikhail.Gareev@novsu.ru, 3 Mikhail.Kalitov@yandex.ru, 4 Nikolai.Kornishev@тovsu.кu,
5 s231099@std.novsu.ru, 6 s241277@std.novsu.ru
Optimization of a television hyperspectral system requires compromises related to the need to obtain high contrast sensitivity and sufficient resolution, signal-to-noise ratio, as well as the required degree of information compression in the generated data hypercube. In this regard, it is necessary to assess the acceptable loss of quality when merging a highly detailed panchromatic and hyperspectral image with enlarged pixels and the resulting degree of compression of the data hypercube.
This study is an experimental study of the dependence of the cross-correlation coefficient on the factor of increase in the size of the decomposition element. The research process requires a theoretical assessment of reducing the information capacity of the data hypercube by merging highly detailed panchromatic and hyperspectral images with enlarged pixels.
The results of computer modeling of the process of increasing the contrast sensitivity of the hyperspectral system with simultaneous corresponding compression of information in the data hypercube by increasing the size of the decomposition element and using the procedure for merging pairs of images have been obtained. An additional possibility of compressing the data hypercube through differential processing of spectral images and reducing the most significant bits that do not carry useful information when recording differential images into the data hypercube has been considered.
By increasing the size of the decomposition element and using procedures for merging pairs of images, the authors have attempted computer simulation of the process of increasing the contrast sensitivity of the hyperspectral system with simultaneous corresponding compression of information in the data hypercube. During the experiment, an additional possibility was considered for compressing the data hypercube through differential processing of spectral images and reducing the most significant bits that do not carry useful information when recording differential images into the data hypercube.
Based on the results of this theoretical and applied research, the authors give recommendations for varying the size of the accumulation zone based on finding a compromise between system quality indicators including contrast sensitivity, resolution, signal-to-noise ratio. They can be used in the development of television hyperspectral systems adapted to the visualized plot.
Gareev V.M., Gareev M.V., Kalitov M.A., Kornishev N.P., Serebryakov D.A., Lebedinsky N.I. Optimization of television hyperspectral system. Nanotechnology: development and applications – XXI century. 2024. V. 16. № 2. P. 31–39. DOI: https://doi.org/10.18127/ j22250980-202402-03 (in Russian)
- Rosi F., Miliani C., Braun R. et al. Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew. Chem. Int. Ed. Engl. 2013. V. 52(20). P. 5258–5261. DOI: https://doi.org/10.1002/anie.201209929.
- Lu G., Fei B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014. V. 19. Article number: 010901. DOI: https://doi.org/10.1117/1.JBO.19.1.010901.
- Obuhova N.A., Baranov P.S., Motyko A.A., Chirkunova A.A. Giperspektral'naya sistema analiza i vosstanovleniya arhivnyh dokumentov. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2023. № 2. S. 32–43 (in Russian).
- Klein M.E., Aalderink B.J., Padoan R. et al. Quantitative hyperspectral reflectance imaging. Sensors. 2008. V. 8(9). P. 5576–5618. DOI: https://doi.org/10.3390/s8095576.
- Feng Y.Z., Sun D.W. Application of hyperspectral imaging in food safety inspection and control: A review. Crit. Rev. Food. Sci. 2012.
V. 52(11). P. 1039–1058. DOI: https://doi.org/10.1080/10408398.2011.651542. - Roskosmos [sajt]. [Elektronnyj resurs]. URL: https://www.roscosmos.ru/24984 (data obrashcheniya: 24.01.2024) (in Russian).
- Gareev V. M., Gareev M. V., Lebedinskij N. I., Kornyshev N. P., Serebryakov D. A. Giperspektral'naya sistema vidimogo diapazona na baze interferometra Fabri–Pero. Vestnik NovGU. 2022. №3(128). S. 78–83. DOI: https://doi.org/10.34680/2076-8052.2022.3(128).78-83 (in Russian).
- Gareev V. M., Gareev M. V., Kornyshev N. P., Serebryakov D. A. Osobennosti formirovaniya izobrazhenij v giperspektral'noj sisteme na baze interferometra Fabri–Pero. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2023. № 1. S. 128–133 (in Russian).
- Gareev V.M., Gareev M.V., Kornyshev N.P., Serebryakov D.A, Karachinov V.A., Gavrushko V.V., Bystrov N.E. Dvuhkanal'naya giperspektral'naya sistema. Vestnik NovGU. 2023. № 5(134). S. 658–670. DOI: https://doi.org/10.34680/2076-8052.2023.5(134).658-670 (in Russian).
- Kang Xudong, Li Shutao, Fang Leyuan, Benediktsson Jon Atli. Pansharpening Based on Intrinsic Image Decomposition. Sensing and Imaging. 2014. V. 15(1). P. 94. DOI: https://doi.org/10.1007/s11220-014-0094-8.
- Cyculin A.K. Televidenie i kosmos: ucheb. posobie. SPb.: LETI. 2003. 225 s. (in Russian).
- Berezin V.V., Umbitaliev A.A., Fahmi Sh.S., Cyculin A.K., Shipilov N.N. Tverdotel'naya revolyuciya v televidenii. M.: Radio i svyaz'. 2006. 312 s. (in Russian).
- Rouz A. Zrenie cheloveka i elektronnoe zrenie: Per. s angl. A.A. Gippiusa. M.: Mir. 1977. 216 s. (in Russian).
- Bykov R.E. Osnovy televideniya i videotekhniki: Uchebnik dlya studentov vuzov. M.: Goryachaya liniya – Telekom. 2006. 399 s.
(in Russian). - Gareev V.M., Gareev M.V., Kornyshev N.P., Serebryakov D.A. Metody povysheniya chetkosti cifrovyh televizionnyh spektrozonal'nyh izobrazhenij. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2023. № 2. S. 19–24 (in Russian).
- Gareev V.M., Gareev M.V., Kornyshev N.P., Serebryakov D.A., Bystrov N.E. Modelirovanie algoritma povysheniya razreshayushchej sposobnosti giperspektral'noj sistemy. Vestnik NovGU. 2023. №5(134). S. 671–679. DOI: https://doi.org/10.34680/2076-8052.2023.5(134).671-679 (in Russian).
- Hemming R.V. Teoriya kodirovaniya i teoriya informacii: Per. s angl. M.: Radio i svyaz'. 1983. 176 s. (in Russian).
- Bystrov N.E. Vvedenie v teoriyu sluchajnyh velichin i processov: uchebnoe posobie. Velikij Novgorod: NovGU im. Yaroslava Mudrogo. 2020. 104 c. (in Russian)
- Sagdullaev Yu.S., Sagdullaev T.Yu. K voprosu vybora zon registracii v spektrozonal'nom televidenii. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2011. №2. S. 3–25 (in Russian).
- Kornyshev N.P., Kalitov M.A., Senin A.S. Issledovanie metoda differencial'noj spektrozonal'noj vizualizacii. Vestnik NovGU. 2018. №1(107). S. 62–69 (in Russian).
- Prett U. Cifrovaya obrabotka izobrazhenij: per. s angl. Kn. 2. M.: Mir. 1982. 480 s. (in Russian).