I.A. Sidorov1, G.A. Gudkov2, E.P. Novichikhin3, S.V. Chizhikov4
1–4 Bauman Moscow State Technical University (Moscow, Russia)
2 Hyperion Ltd. (Moscow, Russia)
3 Institute of Radioengineering and Electronics of Russian Academy of Sciences (Fryazino, Moscow Region, Russia)
1 igorasidorov@yandex.ru, 2 ggudkov967@gmail.com, 3 epnov@mail.ru, 4 chigikov95@mail.ru
The field of research devoted to the study of remote determination of soil moisture profile by measured characteristics of the Earth's own surface thermal field has recently gained increasing scientific and practical interest, especially in the interests of agriculture.
Standard methods of soil parameters control, as well as alternative methods: neutron scattering, method based on measuring the degree of absorption of gamma radiation by the layer of the sample under study, tensometric, as well as indirect electromagnetic methods of soil moisture determination are not productive and efficient enough, as they use contact sensors and cannot be placed on moving carriers. A more efficient method is microwave radiometry, which can be used to determine soil temperature and moisture over large areas during a single flight.
However, there may be some difficulties in using the microwave radiometry method, such as shielding of the soil's own radio-thermal radiation in the presence of vegetation cover, external interference and distortion of results due to surface roughness.
There is also a method of active ground sensing. Studies have shown that it performs worse than microwave radiometry, but combining the two approaches can bring interesting results.
The method of determining soil moisture using microwave radiometric sensing is based on the fact that the microwave radiometer receives the Earth's own electromagnetic radiation, converting the data into moisture maps. And measurements using radiometers operating in different frequency ranges make it possible to determine the integral moisture content at different depths – the so-called moisture portrait.
Microwave radiometers designed for remote sensing can be placed on various platforms – space, airborne or ground-based. However, the most effective in the interests of precision agriculture have proved to be aerial vehicles with a flight height of about 10 metres. Such a vehicle takes only about three minutes to cover one hectare.
Sidorov I.A., Gudkov G.A., Novichikhin E.P., Chizhikov S.V. Radiometric method of soil temperature and moisture measurement. Nanotechnology: development and applications – XXI century. 2024. V. 16. № 1. P. 50–60. DOI: https://doi.org/10.18127/ j22250980-202401-04 (in Russian)
- Trufulyak E.V., Kurchenko N.Yu., Krejmer A.S. Tochnoe zemledelie: sostoyanie i perspektivy. Krasnodar: KubGaU. 2018. 27 s. (in Russian).
- Plaksin I.E., Trifanov A.V., Plaksin S.I. Analiz primeneniya avtomatizirovannyh i robotizirovannyh kompleksov v sel'skom hozyajstve. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produkcii rastenievodstva i zhivotnovodstva. 2018. № 97. S. 73–83. DOI: 10.24411/0131-5226-2018-10091 (in Russian).
- Sidorov I.A., Gudkov A.G., Shashurin V.D., Chizhikov S.V., Novichihin E.P., Hohlov N.F., Porohov I.O., Pchelincev V.E., Agandeev R.V. Distancionnoe opredelenie vlazhnostnogo portreta damby SVCh-radiometrom s borta bespilotnogo letatel'nogo apparata. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022. T. 14. № 3. S. 5−13. DOI: https://doi.org/10.18127/j22250980-202203-01 (in Russian).
- Hohlov N.F., Sidorov I.A., Gudkov A.G., Solov'ev Yu.V., Chizhikov S.V., Agandeev R.V., Gordienko D.V. Aktual'nye argumenty i tekhnologicheskie prioritety agroinzhenernyh prilozhenij perspektivnyh razrabotok bespilotnoj mikrovolnovoj vlazhnostno-temperaturnoj radiometrii na osnove SWOT-analiza. Nanotekhnologii: razrabotka i primenenie – XXI vek. 2023. T. 15. № 2. S. 64−75. DOI: https://doi.org/10.18127/j22250980-202302-06 (in Russian)
- Snehlata K. Soil moisture estimation using microwave remote sensing – a literature review. SGVUJ CLIM Change WATER. 2021. V. 8. P. 55−72. URL: https://www.gyanvihar.org/journals/wp-content/uploads/2021/07/MS-JCCW-05.pdf.
- Weiss M., Jacob F., Duveiller G. Remote sensing for agricultural application: A meta-review. Remote Sensing of Enviroment. 2020. 236. 19h. URL: https://hal.inrae.fr/hal-02627117/document.
- Zhang H., Wang L., Tian T., Yin J. A Review of Unmanned Aerial Vehicle Low-Altitude Remote Sensing (UAV-LARS) Use in Agricultural Monitoring in China. R emote Sens. 2021. 13(6). 1221. DOI: https://doi.org/10.3390/rs13061221.
- Sidorov I.A. Metody opredeleniya vlazhnosti pochvy dlya sistemy tochnogo zemledeliya. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2018. № 4. T. 10. S. 44–50 (in Russian).
- Balaghi S., Ghal-Eh N., Mohammadi A., Vega-Carrillo H.R. A neutron scattering soil moisture measurement system with a linear response. Appl Radiat Isot. 2018 Dec. V. 142. P. 167–172. DOI: 10.1016/j.apradiso.2018.10.002. Epub 2018 Oct 8. PMID: 30326442.
- Ghaemifard M., Ghal-Eh N., Najafabadi R.I., Vega-Carrillo H.R. Angular distribution of scattered neutrons as a tool for soil moisture measurement: A feasibility study. Appl Radiat Isot. 2020. Jun. V. 160. P. 109131. DOI: 10.1016/j.apradiso. 2020. 109131. Epub 2020 Mar 15. PMID: 32351223.
- Sidorov I.A., Shutko A.M., Haarbrink R.B. and others. Practical microwave radiometric risk assessment. Professor Marin Drinov Academic Publishing House Sofia. 2010. 88 p.
- Sidorov I.A. Metody opredeleniya vlazhnosti pochvy dlya sistemy tochnogo zemledeliya. Nanotekhnologii: razrabotka, primenenie — XXI vek. 2018. № 4. S. 44–50. DOI 10.18127/j22250980-201804-06 (in Russian).
- Sidorov I.A. Nauchnaya shkola «Passivnye radiolokacionnye sistemy»: Istoriya vozniknoveniya i razvitiya. Radiotekhnika. 2013. № 1. S. 117–119 (in Russian).
- Trebbels D., Kern A., Fellhauer F., Hübner C., Zengerle R. Miniaturized FPGA-based high-resolution time-domain reflectometer. IEEE Trans. 2013. Instrum Meas. 62. P. 2101–2113.
- Will B., Crnojević-Bengin V., Kitić G. Microwave soil moisture sensors. In Proc. 43rd Europ. Microw. Conf. (Nuremberg, 2013). P. 862–865.
- Will B., Rolfes I. A miniaturized soil moisture sensor based on time domain transmissiometry. Proc. SensorApplic. Symp. (Qneenstown, 2014). P. 233-236. DOI: 10.1109/SAS.2014.6798952.
- Nohlert J., Cerullo L., Winges J., Rylander T., McKelvey T., Holmgren A., Gradinarsky L., Folestad S., Viberg M., Rasmuson A. Global monitoring of fluidized-bed process by means of microwave cavity resonances. 2014. Meas. 55. P. 520–535.
- Nugmanov S.S., Ivas'kevich A.V. Metodika i rezul'taty laboratornyh issledovanij po izmereniyu vlazhnosti pochvy elektricheskim metodom. Izv. Samarskoj gosudarstvennoj sel'skohozyajstvennoj akademii. 2007. № 3. S. 11–13 (in Russian).
- Harhardinov N.A., Bolotov A.G., Sidorov I.A., Chizhikov S.V., Agandeev R.V., Gordienko D.V., Gudkov G.A. Eksperimental'naya ustanovka kompleksnogo oborudovaniya dlya radiometricheskogo distancionnogo opredeleniya portretov vlazhnosti pochvy i pogodnogo monitoringa na poligone VNIIMZ. Elektromagnitnye volny i elektronnye sistemy. 2023. T. 28. № 5. S. 42−48. DOI: https://doi.org/10.18127/j15604128-202305-05 (in Russian).
- Sidorov I.A., Gudkov A.G., Agasieva S.V., Khokhlov N.F., Chernikov A.S., Vagapov Y. A portable microwave radiometer for proximal measurement of soil permittivity. Computers and Electronics in Agriculture. 2022. V. 198. DOI: https://doi.org/10.1016/j.compag.2022.107076.
- Sidorov I.A., Gudkov A.G., Novichihin E.P., Leushin V.Yu., Hohlov N.F., Bolotov A.G., Chizhikov S.V. Rezul'taty naturnyh eksperimentov po distancionnomu opredeleniyu portretov vlazhnosti pochvy (chast' 1). Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022.
T. 14. № 4. S. 517. DOI: https://doi.org/10.18127/j22250980-202204-01 (in Russian). - Sidorov I.A., Gudkov A.G., Novichihin E.P., Hohlov N.F., Bolotov A.G., Chizhikov S.V., Pchelincev V.E., Sinavchian V.S. Rezul'taty naturnyh eksperimentov po distancionnomu opredeleniyu portretov vlazhnosti pochvy (chast' 2). Nanotekhnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 1. S. 41–53. DOI: https://doi.org/10.18127/j22250980-202301-04 (in Russian).
- Parrens M., Wigneron J.-P., Richaume P., Mialon A., Al Bitar A., Fernandez-Moran R., Al-Yaari A., Kerr Y.H. Global-scale surface roughness effects at L-band as estimated from SMOS observations. Remote Sensing of Environment. 2016. V. 181. P. 122–136. DOI: https://doi.org/10.1016/j.rse.2016.04.006.dfd .
- Jackson T.J., Schmugge T.J. Vegetation effects on the microwave emission of soils. Remote Sensing of Environment. 1991. V. 36.
Is. 3. P. 203–212. DOI: https://doi.org/10.1016/0034-4257(91)90057-D. - Jackson T.J., Schmugge T.J. Vegetation effects on the microwave emission of soils. Remote Sensing of Environment. 1991. V. 36.
Is. 3. P. 203–212. ISSN 0034-4257. DOI: https://doi.org/10.1016/0034-4257(91)90057-D. - Saleh K., Wigneron J.-P., Waldteufel P., de Rosnay P., Schwank M., Calvet J.-C., Kerr Y.H. Estimates of surface soil moisture under grass covers using L-band radiometry. Remote Sensing of Environment. 2007. V. 109. Is. 1. P. 42–53. ISSN 0034-4257. DOI: https://doi.org/10.1016/j.rse.2006.12.002.
- Martens B., Lievens H., Colliander A., Jackson T.J., Verhoest N.E.C. Estimating Effective Roughness Parameters of the L-MEB Model for Soil Moisture Retrieval Using Passive Microwave Observations From SMAPVEX12. In: IEEE Transactions on Geoscience and Remote Sensing, July 2015. V. 53. № 7. P. 4091–4103. DOI: 10.1109/TGRS.2015.2390259.
- Alvarez-Mozos J., Casali J., Gonzalez-Audicana M., Verhoest N.E.C. Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation. In: IEEE Transactions on Geoscience and Remote Sensing, April 2006. V. 44. № 4. P. 913–924. DOI: 10.1109/TGRS.2005.862248.
- Sidorov I.A., Gudkov A.G., Chizhikov S.V., Leushin V.Yu. Osobennosti funkcionirovaniya SVCh-radiometrov v usloviyah vneshnih pomekh. RENSIT: Radioelektronika. Nanosistemy. Informacionnye tekhnologii. 2023. № 15(3). S. 223–234. DOI: 10.17725/rensit.2023.15.223 (in Russian).
- Bindlish R., Jackson T., Sun R., Cosh M., Yueh S., Dinardo S. Combined Passive and Active Microwave Observations of Soil Moisture During CLASIC. In: IEEE Geoscience and Remote Sensing Letters. Oct. 2009. V. 6. № 4. P. 644–648. DOI: 10.1109/LGRS.2009.2028441.
- Barber M., Bruscantini C., Grings F., Karszenbaum H. Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Dec. 2016. V. 9. № 12. P. 5449–5460. DOI: 10.1109/JSTARS.2016.2611491.
- Sidorov I.A., Novichihin E.P., Gudkov A.G., Chizhikov S.V., Bolotov A.G., Hohlov N.F., Porohov I.O. Modelirovanie processa priema sobstvennogo radioteplovogo izlucheniya zemnoj poverhnosti. RENSIT: Radioelektronika. Nanosistemy. Informacionnye tekhnologii. 2022. № 14(4). S. 349–362. DOI: 10.17725/rensit.2022.14.349 (in Russian).
- Sidorov I.A., Gudkov A.G., Novichihin E.P., Chizhikov S.V., Porohov I.O. Radiometricheskij metod polucheniya portretov vlazhnosti pochvy dlya issledovaniya gidrologii damb. RENSIT: Radioelektronika. Nanosistemy. Informacionnye tekhnologii. 2023. № 15(2). S. 125–132. DOI: 10.17725/rensit.2023.15.125 (in Russian).
- SVCh-radiometriya zemnoj i vodnoj poverhnosti: ot teorii k praktike. Pod red. V.S. Verby, Yu.V. Gulyaeva, A.M. Shutko, V.F. Krapivina. Sofiya: Akad. izd-vo im. prof. Marina Drinova. 2014. 295 s. (in Russian).
- Sidorov I.A., Hohlov N.F., Novichihin E.P., Leushin V.Yu. Rezul'taty naturnogo eksperimenta po distancionnomu izmereniyu vlazhnosti pochvy dvuhpolyarizacionnym radiometrom na polyah dlya vyrashchivaniya Miskantusa. «SVCh-tekhnika i telekommunikacionnye tekhnologii». 2021. № 3. S. 438–439. ISSN: 2619-1628 (in Russian).
- Sidorov I.A., Gudkov A.G., Oblivancov V.V., Ermolov P.P., Novichihin E.P., Leushin V.Yu., Agandeev R.V. Radiometricheskoe distancionnoe opredelenie portretov vlazhnosti pochvy na vinogradnike v Krymu. Elektromagnitnye volny i elektronnye sistemy. 2022.
T. 27. № 5. S. 65−70. DOI: https://doi.org/10.18127/j15604128-202205-09 (in Russian). - Wan X., Li X., Jang T., Zheng X., et al. High-Resolution Imaging of Radiation Brightness Temperature Obtained by Drone-Borne Microwave Radiometer. Remote Sens. 2023. V. 15(3). P. 832. DOI: https://doi.org/10.3390/rs15030832.
- Kokoshkin A.V., Novichihin E.P., Sidorov I.A., Gudkov A.G., Chizhikov S.V. Osobennosti rekonstrukcii izobrazhenij po chastichno izmerennoj radiogologramme. Elektromagnitnye volny i elektronnye sistemy. 2023. T. 28. № 6. S. 26−31. DOI: https://doi.org/10.18127/j15604128-202305-03 (in Russian).
- Colliander A., Njoku E.G., Jackson T.J., Chazanoff S., McNairn H., Powers J., Cosh M.H., Retrieving soil moisture for non-forested areas using PALS radiometer measurements in SMAPVEX12 field campaign. Remote Sensing of Environment, 2016. V. 184. P. 86–100. ISSN 0034-4257. DOI: https://doi.org/10.1016/j.rse.2016.06.001.
- Archer F., Shutko A., Coleman T., Haldin A., Sidorov I., Novichikhin E. Microwave Remote Sensing of Land Surface from Mobile Platform: The Alabama 2003–2005 Experiment. Abstract. To be presented at “The Int 7IEEE 2006 Geoscience & Remote Sensing Symposium (IGARSS'06)”. Denver, CO, USA. 2006.
- Schmugge T., Jackson T.J., Kustas W.P., Wang J.R. Passive microwave remote sensing of soil moisture: results from HAPEX, FIFE and MONSOON 90. ISPRS Journal of Photogrammetry and Remote Sensing, 1992. V. 47. Iss. 2–3. Pages 127–143. ISSN 0924-2716. DOI: https://doi.org/10.1016/0924-2716(92)90029-9.
- McNairn H. et al. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms. In: IEEE Transactions on Geoscience and Remote Sensing. May 2015. V. 53. № 5. P. 2784–2801. DOI: 10.1109/TGRS.2014.2364913.
- Wilson W.J. et al. Passive active L- and S-band (PALS) microwave sensor for ocean salinity and soil moisture measurements. In: IEEE Transactions on Geoscience and Remote Sensing. May 2001. V. 39. № 5. P. 1039–1048. DOI: 10.1109/36.921422.
- Mohanty B.P., Cosh M.H., Lakshmi V., Montzka C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone Journal. 2017. V. 16. P. 1–9. vzj2016.10.0105. DOI: https://doi.org/10.2136/vzj2016.10.0105/
- Wigneron J.-P., Jackson T.J., O’Neill P., De Lannoy G., de Rosnay P., Walker J.P., Ferrazzoli P., Mironov V., Bircher S., Grant J.P., Kurum M., Schwank M., Munoz-Sabater J., Das N., Royer A., Al-Yaari A., Al Bitar A., Fernandez-Moran R., Lawrence H., Mialon A., Parrens M., Richaume P., Delwart S., Kerr Y. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sensing of Environment. 2017. V. 192. P. 238–262. ISSN 0034-4257. DOI: https://doi.org/10.1016/j.rse.2017.01.024.
- Colliander A., Cosh M.H., Sidharth Misra, Jackson T.J., Crow W.T., Chan S., Bindlish R., Chunsik Chae, Holifield Collins Ch., Yueh S.H. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote Sensing of Environment. 2017. V. 196. P. 101–112. ISSN 0034-4257. DOI: https://doi.org/10.1016/j.rse.2017.04.022.
- Chan S.K., Bindlish R., O’Neill P., Jackson T., Njoku E., Dunbar S., Chaubell J., Piepmeier J., Yueh S., Entekhabi D., Colliander A., Chen F., Cosh M.H., Caldwell T., Walker J., Berg A., McNairn H., Thibeault M., Martínez-Fernández J., Uldall F., Seyfried M., Bosch D., Starks P., Holifield Collins C., Prueger J., van der Velde R., Asanuma J., Palecki M., Small E.E., Zreda M., Calvet J., Crow W.T., Kerr Y. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment. 2018. V. 204. P. 931–941. ISSN 0034-4257. DOI: https://doi.org/10.1016/j.rse.2017.08.025.